论文部分内容阅读
针对标准BP算法存在收敛速度慢,容易陷入局部最小值和前向网络拓扑结构中,隐节点选取困难的问题,采用一种由Levenberg-Marquardt算法与改进自构形算法相结合而成的快速自构形算法训练BP神经网络,建立了训练收敛快,泛化能力强,网络规模小,便于实时控制的开关磁阻电机非线性BP神经网络模型.经与样机实测数据对比,验证了该模型的准确性.该模型有助于进一步优化能量转换,减小转矩脉动.