论文部分内容阅读
面向知识服务过程中内容资源的智能化、知识化、精细化和重组化的碎片性管理需求。深层分析并挖掘语义隐层知识、技术、经验与信息,突破已有传统文本到结构化查询语言(SQL)的语义分析技术瓶颈,提出基于预训练机制的自修正复杂语义分析方法 PT-Sem2SQL。设计结合Kullback-Leibler差异技术的MT-DNN预训练机制,以加强上下文语义理解深度;设计专有增强模块,捕获句内上下文语义信息的位置;并通过自修正方法优化生成模型的执行过程,以解决解码过程中的错误输出。实验结果表明,PT-Sem2SQL能够