论文部分内容阅读
作为传统非线性估计方法的代表,扩展卡尔曼滤波(EKF)存在明显的缺陷。对于强非线性系统,无味滤波(UKV)由于选用有限个采样点获取系统的近似分布,并无需计算量测方程的Jacobian矩阵,显示出对非线性系统估计的优越性。本文选用了一个应用于航天器相对导航中的非线性估计的例子进行仿真,仿真表明UKF的滤波精度要优于EKF。