论文部分内容阅读
L2范数罚最小二乘-支持向量机(least square support vector machine algorithm,LS-SVM)分类器是得到广泛研究和使用的机器学习算法,其算法中正则化阶次是事先给定的,预设q=2.本文提出q范数正则化LS-SVM分类器算法,0<q<∞,把q取值扩大到有理数范围.利用网格法改变正则化权衡参数c和正则化阶次q的值,在所选的c和q值上,使用迭代再权方法求解分类器目标函数,找出最小分类预测误差值,使预测误差和特征选择个数两个性能指标得到提高.通过对不同领域的实际数据进行