论文部分内容阅读
零样本学习旨在通过运用已学到的已知类知识去认知未知类.近年来,"数据+知识驱动"已经成为当下的新潮流,而在计算机视觉领域内的零样本任务中,"知识"本身却缺乏统一明确的定义.针对这种情况,尝试从知识的角度出发,梳理了本领域内"知识"这一概念所覆盖的范畴,共划分为初级知识、抽象知识以及外部知识.基于前面对知识的定义和划分,梳理了当前的零样本学习(主要是图像分类任务的模型)工作,分为基于初级知识的零样本模型、基于抽象知识的零样本模型以及引入外部知识的零样本模型.还对领域内存在的域偏移和枢纽点问题进行了阐述