论文部分内容阅读
正确理解CPI的结构特征和波动趋势,是宏观经济决策的重要依据之一。本文基于EEMD方法首先将CPI分解成6个频率不同的分量,再针对6个分量,建立相应的ARIMA预测模型,各分量预测值叠加作为EEMD—ARI-MA方法的预测值。结果表明:①CPI可由代表着核心CPI的趋势项、重大事件带来的低频分量和短期不均衡导致的高频分量构成。趋势项和低频分量对CPI。的影响强烈,而高频分量对CPI的影响较弱。②EEMD—ARIMA预测精度比未分解的ARIMA模型有较明显提高。