论文部分内容阅读
为了改善感应电机传统直接转矩控制(DTC)的性能缺陷,特别是低速状态下定子磁链畸变、定子电流谐波大、电磁转矩脉动大的缺点,提出一种基于小波神经网络(WNN)的新型非线性自回归移动平均模型(NARMA)。该模型根据H.Akaike的最终预测误差(FPE)准则确定WNN模型中所需的最佳小波个数。小波神经网络有很强的自学习能力,经过训练可很好地识别DTC系统,基于WNN的NARMA速度控制器可代替PI控制器控制感应电机的转矩。理论分析和仿真表明,该方法是非常有效的。