论文部分内容阅读
传统算法进行模糊人脸识别的过程中,一旦人脸表情发生变化,人脸特征也将发生改变,导致人脸识别的准确性降低。为此,提出一种基于改进的格拉斯曼流形的模糊人脸识别方法。在格拉斯曼流形上构建全部模糊人脸样本图像的近邻图来估计人脸特征分布的几何结构,然后将其作为正则化项整合到模糊人脸识别的目标函数中,从而获得更精确的人脸特征投影矩阵。仿真实验结果表明,利用改进算法进行模糊人脸识别,能够提高识别的准确率和效率,效果令人满意。