论文部分内容阅读
针对传统BP神经网络存在学习率设置不当与深度神经网络过拟合导致准确率不高的问题,提出改进的BP神经网络算法。该算法引入了drop-out机制来防止神经网络过拟合,并针对学习率设置不当的问题,将用指数衰减学习率代替传统BP神经网络中固定学习率。实验结果表明,改进后的BP神经网络相较于传统BP神经网络有效地提高了3.06%的测试准确率。