论文部分内容阅读
针对粒度母体混合分布识别中参数优化求解问题,为进一步提高识别效率,利用一种改进的微粒群算法对粒度母体混合分布的参数进行优化。方法通过设置检验值,判断算法是否陷入局部最优解,并让陷入局部最优的粒子进入下一次迭代,避免微粒群算法在搜索过程中陷入局部最优的缺陷问题。在仿真实验部分,将方法估计的高斯混合模型的参数与迭代EM算法估计的模型参数做比较,结果表明,得到的模型参数接近真实的分布,使得粒度母体混合分布的识别率进一步提高。