论文部分内容阅读
目的传统的轨道检测算法受环境干扰因素大导致检测效率低,基于卷积神经网络(CNN)算法的轨道检测结果缺乏对于对象的细腻、独特刻画且过多依赖可视化后处理技术,因此本文提出一种结合多尺度信息的条件生成对抗网络(CGAN)轨道线检测算法。方法在生成器网络中采用多粒度结构将生成器分解为全局和局部两个部分;在判别器网络中采用多尺度共享卷积结构,进一步监督生成器的训练;引入蒙特卡罗搜索技术通过对生成器的中间状态进行搜索,并将结果再送入到判别器中进行对比。结果在井下巷道场景测试集中,本文方法取得了82. 43%像素