论文部分内容阅读
在非线性状态估计中,传统的扩展卡尔曼滤波通过线性化来实现高斯近似,由于截断误差的存在很难保证估计精度;而基本粒子滤波容易出现粒子退化,导致滤波发散。针对粒子滤波的两个基本假设:蒙特卡罗假设和重要采样假设,采用蒙特卡罗随机链的方法来提高粒子的多样性,并利用无味卡尔曼滤波来产生更高精度的替代分布,发展了无味粒子滤波。通过仿真实验证明,相比较扩展卡尔曼滤波和基本粒子滤波,改进后的无味粒子滤波算法性能更优越,对含有非线性非高斯的状态估计问题有更好的滤波效果。