论文部分内容阅读
在工业性设备上测定不同熔炼条件下电渣重熔过程中渣池内温度分布情况的结果表明,渣池内径向和轴向温度分布不均匀。径向由电极中心至结晶器壁,轴向由金属熔池/渣池界面至渣/气界面,温度逐渐降低。在靠近渣/气界面处,轴向温度变化剧烈。在一定的试验条件下,在电极圆柱表面至结晶器壁的1/2距离处,轴向温度分布可用下式表示: t=1675exp(-1.074/l),(5毫米≤l≤210毫米) 其中:t=渣温,℃;l=距渣/气界面距离,毫米。轴向温度差大于300℃,渣面温度低于1350℃。同时发现:渣池内存在着一个“高温区间”,其中温度分布较均匀,温差约为30℃;当结晶器对底水箱不绝缘或电流可以从结晶器壁流向钢锭时,由于渣/气界面温度升高,影响到氧的输入和化学反应物和生成物传递的加速,从而使高温合金中钛烧损值增加。
The results of the determination of the temperature distribution in the slag bath during the ESR process under different smelting conditions on the industrial equipment show that the radial and axial temperature distribution in the slag bath is not uniform. Radial from the electrode center to the mold wall, the axial direction from the metal bath / slag pool interface to the slag / air interface, the temperature gradually decreased. Near the slag / air interface, the axial temperature changes dramatically. Under certain experimental conditions, the axial temperature distribution at the 1/2 distance of the cylindrical surface of the electrode to the mold wall can be expressed as follows: t = 1675exp (-1.074 / l), (5 mm ≤l ≤ 210 mm) Where: t = slag temperature, ° C; l = distance from the slag / gas interface in millimeters. Axial temperature difference greater than 300 ℃, slag surface temperature below 1350 ℃. At the same time, it is found that there is a “high temperature zone” in the slag pool, in which the temperature distribution is more uniform and the temperature difference is about 30 ° C. When the mold is not insulated from the bottom water tank or the current can flow from the mold wall to the ingot, Increase, affecting the oxygen input and chemical reactants and the acceleration of the transfer of products, so that the high-temperature alloy titanium burning value increased.