论文部分内容阅读
含杂率是水稻联合收获机的重要收获性能指标之一,作业过程中收获籽粒掺杂的杂质包含作物的枝梗和茎秆等,为了探索籽粒含杂率和机器作业参数之间的关联,需要实时获取籽粒含杂率数据。该文基于机器视觉的U-Net模型对联合收获机水稻收获籽粒图像进行分割,针对传统分割算法中存在运算量大、耗时多、图像过分割严重和分割参数依赖人为经验难以应对各种复杂谷物图像等问题,采用深度学习模型多次训练学习各分割类别的像素级图像特征,提出基于U-Net深度学习模型的收获水稻籽粒图像中谷物、枝梗和茎秆的分割方法,采用改进的U-Net网