脉冲激光制备纳米材料研究进展

来源 :激光与光电子学进展 | 被引量 : 0次 | 上传用户:czh19890220
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
纳米材料是20世纪末期发展起来的新型材料,其以优异的特殊性能得到了广泛关注.纳米材料的制备是纳米科技中的重要领域.本文介绍了脉冲激光烧蚀法制备纳米材料的两个重要途径——脉冲激光沉积法和脉冲激光液相烧蚀法,包括这两种方法的原理、特点、应用领域以及国内外的研究进展,最后阐述了脉冲激光沉积法和脉冲激光液相烧蚀法在制备工艺和材料性能方面仍需面对的挑战以及未来的发展趋势.
其他文献
基于光声非线性混频方法检测微裂纹时,非线性声信号特性受裂纹接触状态的影响,而裂纹的接触状态受其初始宽度、壁面形貌、调制强度等因素的影响,导致检测过程中声波与微裂纹相互作用的非线性机制发生变化.因此,建立了光声非线性混频微裂纹检测的二维物理模型,利用罚函数法实现裂纹壁间的接触约束.将本模型的实验结果与现有实验结果进行对比分析,验证了本模型的适用性;研究了不同接触状态下的声信号特性,进而分析了非线性机制受裂纹接触状态变化的影响,为研究微裂纹的光声非线性检测提供了理论参考.
激光熔覆层的组织和应力对熔覆层的裂纹控制具有重要影响,而熔覆层的组织和应力与熔覆过程中的预热温度密切相关.本文在铸钢基体表面激光熔覆铁基粉末制备了熔覆层,分析了不同预热温度下熔覆层的组织和应力分布规律.结果表明:预热温度越高,熔覆层与基体之间的元素相互作用越强;当预热温度为100℃时,熔覆层中的应力峰值明显降低,平行于扫描方向的残余应力峰值从室温时的594 MPa减小到442 MPa,垂直于扫描方向的残余应力峰值从室温时的579 MPa减小到383 MPa;当预热温度为200℃时,应力的降低效果显著减弱;
针对模具表面易磨损失效的问题,本文采用同步送粉激光熔覆技术在Cr12模具钢表面制备了一系列Fe50-TiC复合熔覆层,并利用扫描电镜(SEM)、显微硬度计、摩擦磨损试验机对熔覆层的微观组织、气孔率、显微硬度及耐磨性能进行分析,探索TiC含量对Fe50-TiC熔覆层的影响规律.研究结果表明:随着TiC含量的增加,复合熔覆层的显微硬度逐渐增大,耐磨性随之增强,但气孔率也呈增大的趋势,未熔TiC颗粒增多,基于颗粒形核生长的组织增多;当TiC的质量分数为35%时,熔覆层的气孔率有所下降,TiC以溶解形核生长的树枝
相比于普通光源,高斯光束具有很好的方向性,而且应用范围十分广泛,采用COMSOL多物理场仿真软件对以布儒斯特角入射的高斯光束的传输特性进行研究.仿真结果表明,s偏振情况下,折射光束为高斯光束,反射光束的方向与折射光束互相垂直;p偏振情况下,折射光束为高斯光束,反射光束不存在,但反射界面的电场模量出现中心强度显著抑制的双瓣剖面,而且出现很弱的双峰反射;在不同的折射率下,折射介质的折射率越大,折射光束的强度集中范围越窄,折射光束的能量越来越低,折射光束与入射光束的电场模量差越小.
为改善制动盘的热疲劳性能,本文在制动盘用铸钢材料表面激光熔覆了一层铁基涂层,然后采用光学显微镜和扫描电子显微镜等分析了熔覆层及基体材料在热疲劳过程中的裂纹扩展速率、组织形貌演化等.结果表明:激光熔覆层组织存在严重的偏析;在热循环过程中,过饱和的M7C3型碳化物成为热疲劳裂纹的快速扩展通道,使熔覆层极易发生脆性断裂,从而导致熔覆层试样的热疲劳性能极差;对熔覆层试样进行850℃/5h的热处理工艺,可以使元素均匀分布,消除枝晶偏析和内应力,而且可使M7C3转变为高温性能较为稳定的M23C6,大幅提升熔覆层的热疲
为了解决产生光量子霍尔效应的模型存在的边界态局域较弱和带宽较窄问题,构建了三角复式晶格光子晶体,并利用简约布里渊区中心点的能带简并得到奇宇称的p轨道和偶宇称的d轨道.首先,通过晶胞缩放反转两个轨道的位置,使拓扑相位发生变化.然后,分析了影响拓扑平庸结构带隙和非平庸结构带隙的主要因素.最后,对两种结构的介质柱半径和缩放距离进行了优化计算,找到实现两种结构最大公共带隙的最优参数,可实现的最大相对带宽为24.59%.在最优结构参数的基础上构建边界结构并计算出边界态色散曲线,结果表明,该边界态在有效带宽为0.04
针对同轴送粉激光熔覆气-粉耦合传输过程,提出了一种等效模型.该等效模型考虑粉末与喷嘴壁、粉末之间复杂碰撞行为对粉末出射角度和速度的影响.并建立了喷嘴外部的气-粉传输模型.对粉末瞬态位置、运动轨迹及连续分布的平均密度进行模拟,研究工件表面状态和压缩气流速对上述变量的影响规律.结果表明:粉束整体形貌、聚集位置及轨迹线密度的模拟结果均与实验结果吻合较好;熔池未形成时对粉末的反弹在距离工件约10 mm高度的粉束中心区域较为显著,该区域的粉末密度最大提升了约1倍,而随着距离工件的高度增加,粉末密度的提升效果逐渐减弱
针对钢轨长期使用后出现的磨损问题,通常采用激光熔覆技术对损伤表面进行修复.本文以U75V钢轨为基体材料,对多层多道激光熔覆成形过程中的工艺参数进行优化研究.结果表明:U75V钢轨激光熔覆修复成形的最佳工艺参数为激光功率900 W、熔覆速度600 mm/min、送粉速度7.58 g/min、搭接率58.8%、Z轴抬升量0.6 mm、预热温度200℃.多层多道熔覆区多为等轴晶,热影响区中存在针状马氏体组织.熔覆区的硬度为480 HV,与母材最大硬度430 HV相差不大;热影响区受马氏体组织的影响,硬度为母材的
光子集成回路和光子芯片具有低功耗、高速率、大带宽等优势,是下一代光信息处理系统的必然趋势,而片上光源是其中的关键技术.设计了一种基于光学微环谐振腔的光学泵浦激光器,泵浦光与激光通过全光控制输出到不同的波导上.结合四能级-二电子能级模型和时域有限差分法进行电磁场仿真,分析了激光输出和粒子态密度的时域特性及稳态电磁场模式分布,约94 ps后达到稳态粒子数密度反转布居,1064 nm泵浦光和1550 nm激光分别通过上话路的Through端口和下话路的Add端口输出.
基于激光自混合干涉的振动重构方法需估算光反馈水平因子以及线宽增强因子,目标振动导致光反馈水平变化,引入较大的测量误差.为提高测振精度和鲁棒性,本文提出一种基于自混合干涉调频特性的振动重构算法,利用全光纤马赫-曾德尔干涉仪获得自混合干涉调频信号,解算出激光器的瞬时频率,并联合调幅信号相位实现对目标振动信息重构.该方法无需估算光反馈水平因子以及线宽增强因子,极大地简化了测量光路与解算模型,在保证测量精度的同时降低了振动信息提取过程的复杂性.数值仿真表明,在适度光反馈的条件下,该算法在振幅为2~100 μm的测