论文部分内容阅读
【摘要】培养学生的思维能力是现代学校教学的一项基本任务。第二次世界大战以后,科学技术迅猛发展,知识激增,知识的更新加快,随之对教育提出了新的要求,就是要提高年轻一代的素质。不仅要教给学生现代科学技术知识,而且要把学生培养成勇于思考、勇于探索、勇于创新的人,从而强调教学要注重发展学生的智力。从心理学角度来看,智力的核心是思维能力。思维能力增强了,智力水平也就提高了。因此各国的小学数学都把培养学生思维能力作为教学的一项基本任务。
【关键词】小学数学;发散思维;创造性
【中图分类号】G623.5【文献标识码】B 【文章编号】1001-4128(2011)02-0109-02
发散思维是不依常规,寻求变异,对给出的材料、信息从不同角度,向不同方向,用不同方法或途径进行分析和解决问题的1种思维方式。长期以来,小学数学教学以集中思维为主要思维方式,课本上的题目和材料的呈现过程大都循着1个模式,学生习惯于按照书上写的与教师教的方式去思考问题,用符合常规的思路和方法解决问题,这对于基础知识、基本技能的掌握是必要的,但对于小学生学习数学兴趣的激发、智力能力的发展,特别是创造性思维的发展,显然是不够的。而发散思维却正好反映了创造性思维“尽快联想,尽多作出假设和提出多種解决问题方案”的特点,因而成为创造性思维的1种主要形式。在小学数学教学的过程中,在培养学生初步的逻辑思维能力的同时,也要有意识地培养学生的发散思维能力。笔者认为我们要从以下几点去着手:
1 培养学生思维能力要与数学知识的教学紧密结合
这一点新大纲已明确指出,“学生初步的逻辑思维能力的发展,……要有意识地结合教学内容进行。”因为数学基础知识的教学与思维能力的培养是相辅相成的。基础知识为培养思维能力提供富有逻辑性的素材,反过来培养了思维能力又为很好地掌握数学基础知识创造有利的条件。把两者分离开来教学,无论对学习数学基础知识或培养思维能力都不会有好的效果。为此,备课时要认真研究教材,弄清数学知识本身的科学性、系统性和逻辑性,分析教材中含有哪些培养学生思维能力的因素。制订一节课的教学计划时,不仅要明确数学知识方面的教学目的要求,而且要明确在培养思维能力上侧重哪些方面,达到什么要求,并且力求在教案中有所体现。教学时要考虑选定什么样的方法,既能做到使学生较好地理解和掌握数学知识,又有助于激发学生思考,培养学生的思维能力。
2 要适应小学生心理特点,注意把操作、思维和言语表达结合起来
这里有两层意思。一是适应小学生特点,注意把思维与操作、直观结合起来。二是适应小学生特点,把思维与言语表达结合起来。关于第一点,是由小学生的思维特点决定的。低年级学生的思维特点仍以具体形象思维为主,中、高年级学生的思维虽然逐步向抽象逻辑思维过渡,但是在许多情况下,特别是遇到较抽象的数学知识,仍需要适当借助操作和直观。为了使学生较好地理解和掌握数学知识,同时也为了逐步发展学生的抽象思维,激发学习兴趣,在一定条件下适当利用操作和直观来引导学生思维是必要的。但是无论操作和直观,都是学习的手段,在适当时候要逐步脱离操作和直观,过渡到抽象思维,避免学生过多地依靠操作和直观。关于第二点也很重要。思维和语言是密切联系着的。语言是思维的工具。人们借助语言,才能对事物进行抽象、概括,反过来又借助语言对人们的思维进行调节,使思维逐步完善。因此发展学生的思维,必须相应地发展学生的言语。学生的言语也是逐步发展的,所以在发展学生的思维和言语时,都要考虑到学生言语发展的特点。例如,低年级学生的口头言语有了一定的发展,但是书面言语的学习还刚开始,因此在这个阶段应着重训练学生用口头言语表达自己的思维。到中年级,一方面继续发展学生的口头言语表达能力,另一方面要适当发展学生的书面言语,其中包括默读课本内容和应用题。到了高年级,一方面提高学生的口头言语表达能力,如说明算理、口头分析应用题以及口头论证等,另一方面加强发展书面言语,如少数题可以训练学生写出思考过程。在发展儿童言语时还要注意适应学生的差异,不能一刀切。例如,在低年级同一班学生,可以有一小部分学生能独立说明算理,有一部分学生则只要求在教师引导下说明算理,还可能有一小部分学生在教师引导下说明算理还有困难。但只要坚持训练,逐步提高要求,学生的言语表达能力和思维都会逐步有所发展。
3 以突破常规思维为核心,勇于探索,培养思维的创造性
思维的创造性,就是在已有知识经验的基础上,能独创性地发现新问题,主动提出自己与众不同的见解,找到解决问题的最佳途径。思维的创造性具有新颖独特、突破常规和灵活变通的特征,是思维品质的核心。例如有这样一位小朋友,老师要求用3、5、9三张数字卡片组数,大家都只能按常规思维组成如3、5、9、35、39、59、53、93、359……一些数,而他除此之外,还能想到把卡片9倒过来当成6用,比别人多组不少数。这个有点“倔”的孩子由静想到动,体现的就是思维的创造性。
在小学数学解应用题中,我们分析题目一般是从条件出发,由条件推出结果,这是一种常规思维方法。如有这样一道题:池塘水面渐渐被长出的荷叶所覆盖,每天覆盖面积增加一倍。30天后就把整个池塘水面给覆盖了,那么覆盖半个池塘水面需要几天?这道题如果用常规的方法无从下手,而采用逆向倒推的创新思维方式则比较容易解决。因为每天增加一倍,30天的前一天刚好覆盖半个池塘水面。这样思考进一步发挥了学生的创造才能,调动了他们学习的积极性和主动性,使其对所学知识理解得更深刻,创造性思维品质也得以培养和发展。
4 在诱导乐于求异的心理倾向中,培养学生的发散思维能力
赞可夫说过:“凡是没有发自内心求知欲和兴趣的东西,是很容易从记忆中挥发掉的”。赞可夫这句话说明了发散思维能力的形成,需要以乐于求异的心理倾向作为1种重要的内驱力。教师妥善于选择具体题例,创设问题情境,精细地诱导学生的求异意识。对于学生在思维过程中时不时地出现的求异因素要及时予以肯定和热情表扬,使学生真切体验到自己求异成果的价值。对于学生欲寻异解而不能时,教师则要细心点拨,潜心诱导,帮助他们获得成功,使学生渐渐生成自觉的求异意识,并日渐发展为稳定的心理倾向,在面临具体问题时,就会能动地作出“还有另解吗?”“试试看,再从另1个角度分析1下!”的求异思考。
事实证明,也只有在这种心理倾向驱使下,那些相关的基础知识、解题经验才会处于特别活跃的状态,也才可能对题中数量作出各种不同形式的重组,逐步形成发散思维能力。
同时,鼓励学生质疑问难,培养创新能力。生疑是思考的开端,俗话说:学源于思,思源于疑才能常有思考,有思考,才能常有探索,才能常有创新。在教学过程中,不妨多给学生一些时间,引导他们向教师提问题。引导学生质疑,才能常有创新。帮助学生释疑这是发展学生创新思维的一种主要途径。如教学分数的认识时,在教师的启发引导下,学生提出这样的一个问题,如教学“长方体的认识”时学生也提出许多问题,如长方体有6个面,每个面有4条边,为什么长方体的棱不是24条,而是12条?“一条棱有2个端点,长方体有12条棱为什么只有8个顶点?”“长方体和长方形究竟有什么区别?”有一个同学提出了一颇为生动新颖的例子,他说:“我们在纸上面一个对边相等而且四个角都地直角的四边形即是长主形,它只有长和宽而没有高。当我们把它剪下来后,这时它就有了高,所以它是长方体。”通过质疑问难,自由讨论,学生潜在的创造能力得到充分发挥。
5 要转化思想,训练思维的联想性
联想思维是一种表现想象力的思维,是发散思维的显著标志。联想思维的过程是由此及彼,由表及里。通过广阔思维的训练,学生的思维可达到一定广度,而通过联想思维的训练,学生的思维可达到一定深度。例如有些题目,从叙述的事情上看,不是工程问题,但题目特点确与工程问题相同,因此可用工程问题的解题思路去分析、解答。让学生进行多种解题思路的讨论时,有的解法需要学生用数学转化思想,才能使解题思路简捷,既达到一题多解的效果,又训练了思路转化的思想。“转化思想”作为一种重要的数学思想,在小学数学中有着广泛的应用。在应用题解题中,用转化方法,迁移深化,由此及彼,有利于学生联想思维的训练。总之,在数学教学中多进行发散性思维的训练,不仅要让学生多掌握解题方法,更重要的是要培养学生灵活多变的解题思维,从而既提高教学质量,又达到培养能力、发展智力的目的。
做好,要在多种形式的训练中,培养学生的发散思维能力。
在小学数学教学过程中,教师可结合教学内容和学生的实际情况,采取多种形式的训练,培养学生思维的敏捷性和灵活性,以达到诱导学生思维发散,培养发散思维能力的目的。
5.1 一题多变。对题中的条件、问题、情节作各种扩缩、顺逆、对比或叙述形式的变化,让学生在各种变化了的情境中,从各种不同角度认识数量关系。通过这种训练不仅使学生更深入地掌握工程问题的结构和解法,还可预防思维定势,同时也培养了发散思维能力。
5.2 一图多问。引导学生观察同一事物时,要从不同的角度、不同的方面仔细地观察,认识事物,理解知识,这样既能提高学生思维的灵活性,又能培养学生的发散思维能力。通过这几个问题的回答,学生不仅能较系统地感知6的组成知识,而且能提高思维的灵活性。
5.3 一题多议。提供某种数学情境,调度学生多方面的旧知、技能或经验,组织议论,引起思维火花的撞击
5.4 一题多解。在条件和问题不变的情况下,让学生多角度、多侧面地进行分析思考,探求不同的解题途径。一题多解的训练是培养学生发散思维的一个好方法。它可以通过纵横发散,使知识串联、综合沟通,达到举一反三、融会贯通的目的。
综上所述,在小学数学教学中,我们要在多方面时刻注意培养学生的发散思维能力。但是值得注意的是,如果片面地培養学生的发散思维能力,就会失之偏颇。在思维向某一方向发散的过程中,仍然需要集中思维的配合,需要严谨的分析、合乎逻辑的推理,在发散的多种途径、多种方法中,也需要通过比较判断,获得一种最简捷、最科学的方案与结果。所以,思维的发散与集中犹如鸟之双翼,需要和谐配合,才能使学生的思维发展到新的水平。
【关键词】小学数学;发散思维;创造性
【中图分类号】G623.5【文献标识码】B 【文章编号】1001-4128(2011)02-0109-02
发散思维是不依常规,寻求变异,对给出的材料、信息从不同角度,向不同方向,用不同方法或途径进行分析和解决问题的1种思维方式。长期以来,小学数学教学以集中思维为主要思维方式,课本上的题目和材料的呈现过程大都循着1个模式,学生习惯于按照书上写的与教师教的方式去思考问题,用符合常规的思路和方法解决问题,这对于基础知识、基本技能的掌握是必要的,但对于小学生学习数学兴趣的激发、智力能力的发展,特别是创造性思维的发展,显然是不够的。而发散思维却正好反映了创造性思维“尽快联想,尽多作出假设和提出多種解决问题方案”的特点,因而成为创造性思维的1种主要形式。在小学数学教学的过程中,在培养学生初步的逻辑思维能力的同时,也要有意识地培养学生的发散思维能力。笔者认为我们要从以下几点去着手:
1 培养学生思维能力要与数学知识的教学紧密结合
这一点新大纲已明确指出,“学生初步的逻辑思维能力的发展,……要有意识地结合教学内容进行。”因为数学基础知识的教学与思维能力的培养是相辅相成的。基础知识为培养思维能力提供富有逻辑性的素材,反过来培养了思维能力又为很好地掌握数学基础知识创造有利的条件。把两者分离开来教学,无论对学习数学基础知识或培养思维能力都不会有好的效果。为此,备课时要认真研究教材,弄清数学知识本身的科学性、系统性和逻辑性,分析教材中含有哪些培养学生思维能力的因素。制订一节课的教学计划时,不仅要明确数学知识方面的教学目的要求,而且要明确在培养思维能力上侧重哪些方面,达到什么要求,并且力求在教案中有所体现。教学时要考虑选定什么样的方法,既能做到使学生较好地理解和掌握数学知识,又有助于激发学生思考,培养学生的思维能力。
2 要适应小学生心理特点,注意把操作、思维和言语表达结合起来
这里有两层意思。一是适应小学生特点,注意把思维与操作、直观结合起来。二是适应小学生特点,把思维与言语表达结合起来。关于第一点,是由小学生的思维特点决定的。低年级学生的思维特点仍以具体形象思维为主,中、高年级学生的思维虽然逐步向抽象逻辑思维过渡,但是在许多情况下,特别是遇到较抽象的数学知识,仍需要适当借助操作和直观。为了使学生较好地理解和掌握数学知识,同时也为了逐步发展学生的抽象思维,激发学习兴趣,在一定条件下适当利用操作和直观来引导学生思维是必要的。但是无论操作和直观,都是学习的手段,在适当时候要逐步脱离操作和直观,过渡到抽象思维,避免学生过多地依靠操作和直观。关于第二点也很重要。思维和语言是密切联系着的。语言是思维的工具。人们借助语言,才能对事物进行抽象、概括,反过来又借助语言对人们的思维进行调节,使思维逐步完善。因此发展学生的思维,必须相应地发展学生的言语。学生的言语也是逐步发展的,所以在发展学生的思维和言语时,都要考虑到学生言语发展的特点。例如,低年级学生的口头言语有了一定的发展,但是书面言语的学习还刚开始,因此在这个阶段应着重训练学生用口头言语表达自己的思维。到中年级,一方面继续发展学生的口头言语表达能力,另一方面要适当发展学生的书面言语,其中包括默读课本内容和应用题。到了高年级,一方面提高学生的口头言语表达能力,如说明算理、口头分析应用题以及口头论证等,另一方面加强发展书面言语,如少数题可以训练学生写出思考过程。在发展儿童言语时还要注意适应学生的差异,不能一刀切。例如,在低年级同一班学生,可以有一小部分学生能独立说明算理,有一部分学生则只要求在教师引导下说明算理,还可能有一小部分学生在教师引导下说明算理还有困难。但只要坚持训练,逐步提高要求,学生的言语表达能力和思维都会逐步有所发展。
3 以突破常规思维为核心,勇于探索,培养思维的创造性
思维的创造性,就是在已有知识经验的基础上,能独创性地发现新问题,主动提出自己与众不同的见解,找到解决问题的最佳途径。思维的创造性具有新颖独特、突破常规和灵活变通的特征,是思维品质的核心。例如有这样一位小朋友,老师要求用3、5、9三张数字卡片组数,大家都只能按常规思维组成如3、5、9、35、39、59、53、93、359……一些数,而他除此之外,还能想到把卡片9倒过来当成6用,比别人多组不少数。这个有点“倔”的孩子由静想到动,体现的就是思维的创造性。
在小学数学解应用题中,我们分析题目一般是从条件出发,由条件推出结果,这是一种常规思维方法。如有这样一道题:池塘水面渐渐被长出的荷叶所覆盖,每天覆盖面积增加一倍。30天后就把整个池塘水面给覆盖了,那么覆盖半个池塘水面需要几天?这道题如果用常规的方法无从下手,而采用逆向倒推的创新思维方式则比较容易解决。因为每天增加一倍,30天的前一天刚好覆盖半个池塘水面。这样思考进一步发挥了学生的创造才能,调动了他们学习的积极性和主动性,使其对所学知识理解得更深刻,创造性思维品质也得以培养和发展。
4 在诱导乐于求异的心理倾向中,培养学生的发散思维能力
赞可夫说过:“凡是没有发自内心求知欲和兴趣的东西,是很容易从记忆中挥发掉的”。赞可夫这句话说明了发散思维能力的形成,需要以乐于求异的心理倾向作为1种重要的内驱力。教师妥善于选择具体题例,创设问题情境,精细地诱导学生的求异意识。对于学生在思维过程中时不时地出现的求异因素要及时予以肯定和热情表扬,使学生真切体验到自己求异成果的价值。对于学生欲寻异解而不能时,教师则要细心点拨,潜心诱导,帮助他们获得成功,使学生渐渐生成自觉的求异意识,并日渐发展为稳定的心理倾向,在面临具体问题时,就会能动地作出“还有另解吗?”“试试看,再从另1个角度分析1下!”的求异思考。
事实证明,也只有在这种心理倾向驱使下,那些相关的基础知识、解题经验才会处于特别活跃的状态,也才可能对题中数量作出各种不同形式的重组,逐步形成发散思维能力。
同时,鼓励学生质疑问难,培养创新能力。生疑是思考的开端,俗话说:学源于思,思源于疑才能常有思考,有思考,才能常有探索,才能常有创新。在教学过程中,不妨多给学生一些时间,引导他们向教师提问题。引导学生质疑,才能常有创新。帮助学生释疑这是发展学生创新思维的一种主要途径。如教学分数的认识时,在教师的启发引导下,学生提出这样的一个问题,如教学“长方体的认识”时学生也提出许多问题,如长方体有6个面,每个面有4条边,为什么长方体的棱不是24条,而是12条?“一条棱有2个端点,长方体有12条棱为什么只有8个顶点?”“长方体和长方形究竟有什么区别?”有一个同学提出了一颇为生动新颖的例子,他说:“我们在纸上面一个对边相等而且四个角都地直角的四边形即是长主形,它只有长和宽而没有高。当我们把它剪下来后,这时它就有了高,所以它是长方体。”通过质疑问难,自由讨论,学生潜在的创造能力得到充分发挥。
5 要转化思想,训练思维的联想性
联想思维是一种表现想象力的思维,是发散思维的显著标志。联想思维的过程是由此及彼,由表及里。通过广阔思维的训练,学生的思维可达到一定广度,而通过联想思维的训练,学生的思维可达到一定深度。例如有些题目,从叙述的事情上看,不是工程问题,但题目特点确与工程问题相同,因此可用工程问题的解题思路去分析、解答。让学生进行多种解题思路的讨论时,有的解法需要学生用数学转化思想,才能使解题思路简捷,既达到一题多解的效果,又训练了思路转化的思想。“转化思想”作为一种重要的数学思想,在小学数学中有着广泛的应用。在应用题解题中,用转化方法,迁移深化,由此及彼,有利于学生联想思维的训练。总之,在数学教学中多进行发散性思维的训练,不仅要让学生多掌握解题方法,更重要的是要培养学生灵活多变的解题思维,从而既提高教学质量,又达到培养能力、发展智力的目的。
做好,要在多种形式的训练中,培养学生的发散思维能力。
在小学数学教学过程中,教师可结合教学内容和学生的实际情况,采取多种形式的训练,培养学生思维的敏捷性和灵活性,以达到诱导学生思维发散,培养发散思维能力的目的。
5.1 一题多变。对题中的条件、问题、情节作各种扩缩、顺逆、对比或叙述形式的变化,让学生在各种变化了的情境中,从各种不同角度认识数量关系。通过这种训练不仅使学生更深入地掌握工程问题的结构和解法,还可预防思维定势,同时也培养了发散思维能力。
5.2 一图多问。引导学生观察同一事物时,要从不同的角度、不同的方面仔细地观察,认识事物,理解知识,这样既能提高学生思维的灵活性,又能培养学生的发散思维能力。通过这几个问题的回答,学生不仅能较系统地感知6的组成知识,而且能提高思维的灵活性。
5.3 一题多议。提供某种数学情境,调度学生多方面的旧知、技能或经验,组织议论,引起思维火花的撞击
5.4 一题多解。在条件和问题不变的情况下,让学生多角度、多侧面地进行分析思考,探求不同的解题途径。一题多解的训练是培养学生发散思维的一个好方法。它可以通过纵横发散,使知识串联、综合沟通,达到举一反三、融会贯通的目的。
综上所述,在小学数学教学中,我们要在多方面时刻注意培养学生的发散思维能力。但是值得注意的是,如果片面地培養学生的发散思维能力,就会失之偏颇。在思维向某一方向发散的过程中,仍然需要集中思维的配合,需要严谨的分析、合乎逻辑的推理,在发散的多种途径、多种方法中,也需要通过比较判断,获得一种最简捷、最科学的方案与结果。所以,思维的发散与集中犹如鸟之双翼,需要和谐配合,才能使学生的思维发展到新的水平。