基于线性分配的难负样本挖掘度量学习

来源 :计算机应用 | 被引量 : 0次 | 上传用户:yulei000111
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
科学家依靠鲸鱼尾巴的形状及其独特的标记来识别鲸鱼的种类,但靠人眼识别和手工标注的过程非常繁琐。而且鲸鱼尾巴照片数据集存在数据分布不均衡的特点,其中个别种类样本数量极少,甚至仅有一份;同时样本个体差异较小,并且包含未知类别,导致以图像分类的方式完成鲸鱼身份的自动标注存在困难。为解决度量学习在该任务下难以分类的问题,在孪生神经网络(SNN)的基础上,利用线性分配问题(LAP)算法进行难负样本挖掘训练过程从而动态地构筑训练批次。首先对训练样本提取图像特征向量,并计算特征向量的相似性度量;然后通过LAP为模
其他文献
水貂出血性肺炎是由绿脓杆菌引起的一种急性传染病。感染出血性肺炎的水貂往往呈急性经过,突然死亡,不表现出任何症状,若不及时治疗,会给养殖户造成严重的经济损失。
为了更好地发挥通信系统的性能,充分利用系统节点的资源,提高系统的可靠性与稳定性,设计了一种基于DPDK并行通信的动态监控模型。该模型结合DPDK和通信系统的高速率、大流量、强实时性等特点,面向多节点备份、数据包与控制包分离、多网口并行收发数据包、多核并行处理数据包进行设计,分析了监控对象,研究了数据采集方法,设计了二层通信协议DMPD,并对网口进行了细粒度监控,给出了网口负载信息模型。另外,将散列
回 回 产卜爹仇贱回——回 日E回。”。回祖 一回“。回干 肉果幻中 N_。NH lP7-ewwe--一”$ MN。W;- __._——————》 砧叫]们羽 制作:陈恬’#陈川个美食 Back to yield
多数群智感知(MCS)任务分配方法针对单个任务,难以适用于多任务实时并发的现实场景,而且往往需要实时获取用户位置,不利于保护参与者隐私。针对上述问题,提出了一种面向用户区域的分布式多任务分配方法Crowd-Cluster。该方法首先通过贪心启发算法将全局感知任务及用户区域进行分簇;其次,基于空间关联性采用Q-learning算法将并发任务组合构成任务路径;接着,构建符合玻尔兹曼分布的用户意愿模型对