论文部分内容阅读
对时序数据建模与辨识技术进行了分析,提出了使用鲁棒LS-SVM算法建立ARMA时序预测模型。该模型是在LS-SVM的约束条件中加入鲁棒特性和时序模型参数,使之在求解的过程中对孤立点与噪声不敏感,并且能准确地辨识时序模型参数。考虑到高炉的热状态的输入输出数据集间存在着复杂非线性时序上的关系,通过用基于鲁棒LS-SVM的ARMA模型预报铁水中硅的含量,从而达到了预测高炉热状态的目的。说明了该模型在对非线性时间序列预测精度和稳定性上具有明显的优越性,为稳定钢铁质量和生产工艺创造了良好条件。