论文部分内容阅读
为准确分割金刚石颗粒图像,基于空洞卷积网络构建图像语义分割模型。以自建的小型金刚石颗粒图像数据集为基础,对所建模型的批处理规模、卷积层过滤器数量和膨胀系数等超参数进行调优。对比调优后的空洞卷积网络与传统的全局阈值法、自适应阈值法对金刚石颗粒图像的分割能力。研究结果表明:批处理规模、卷积层过滤器数量和膨胀系数等参数对网络的分割能力有重要影响;空洞卷积网络在0.965的精确度下可达到0.966的召回率,性能明显高于传统方法的,尤其是较好地解决了金刚石颗粒上亮斑的归类问题。