论文部分内容阅读
差异性是提高分类器集成泛化性能的重要因素。采用熵差异性度量及数据子集法训练基分类器,研究了爬山选择、集成前序选择、集成后序选择以及聚类选择策略选取个体模型的集成学习。实验结果表明,由选择策略选取差异性较大的个体模型,其集成性能表现出较好的优势;从总体角度考虑,爬山选择策略的集成性能优于集成前序选择和集成后序选择的集成性能;另外,由聚类技术选取的集成模型,当集成正确率较稳定时,则模型间的差异性变化较小;簇数也对集成性能与集成模型间的差异性产生一定的影响。