论文部分内容阅读
为了提高表面肌电信号的遥操作机械手运动模式识别率,设优化支持向量机(IPSO-SVM)。该方法首先简化PSO的位置和速度公式,然后提出ESE状态估计策略判断算法的"早熟"收敛,最后对6类手臂运动模式(握拳、展拳、内旋、外旋、屈腕、伸腕)进行分类并与另外4个测试算法的分类结果进行比较。实验结果表明:IPSO-SVM算法的平均准确率为93.75%,而传统SVM算法的平均准确率为70.21%;算法的训练时间和泛化时间都有明显的提高;具有较强的鲁棒性和抗干扰能力。因此IPSO-SVM算法可以很好的解决表面肌电信号