论文部分内容阅读
露天矿山台阶爆破后矿岩的平均块度是衡量爆破质量的重要指标,对后续的铲装和运输也具有重要的意义。为了对台阶爆破后的矿岩平均块度进行预测,使用果蝇优化算法(FOA)对支持向量机回归模型(SVM)进行参数优化,通过建立基于果蝇优化算法的支持向量机回归模型(FOA-SVM)对矿岩爆破平均块度进行预测,避免传统的SVM参数选取对预测结果准确性产生的影响。结果表明,FOA-SVM可实现对矿岩爆破平均块度的较好预测。