基于改进的模糊C-均值聚类算法及支持向量机的眼底图像中硬性渗出检测方法

来源 :北京生物医学工程 | 被引量 : 0次 | 上传用户:sddhyyj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的提出一种基于改进的模糊C-均值(improved fuzzy C-means,IFCM)聚类算法及支持向量机(support vector machine,SVM)的检测算法,以实现对眼底图像中硬性渗出的自动识别。方法首先利用改进的FCM算法对由江苏省中医院眼科提供的120幅彩色眼底图像进行粗分割以获取硬性渗出候选区域;其次,利用Logistic回归对候选区域提取出的特征进行选择,并利用候选区域的优化特征集及相应判定结果建立SVM分类器,实现眼底图像中硬性渗出的自动检测;最后利用该方法对65幅眼底图像
其他文献