论文部分内容阅读
为避免单一模型预报钟差的弱点,提出了一种基于灰色系统和神经网络(neural network,NN)的混合模型来实现钟差的预报,并给出了基于GM(1,1)模型和广义回归神经网络(generalized regression neural network,GRNN)进行钟差预报的基本思想、具体方法和实施步骤。针对神经网络算法易训练过度、泛化能力弱的问题,采用K重交叉验证法(K-fold cross-validation)提高网络的泛化能力。为验证该混合预报模型的可行性和有效性,利用实测GPS卫星钟差数