论文部分内容阅读
提出了一种有效的木材缺陷自动检测方法,试图赋予计算机从木材图像数据中自动辨别出缺陷的能力,主要分析了木材缺陷的形态、走向和分布规律.首先将要识别的木材图像变换到HSV色彩空间,分别对H,S和V层进行区域分割和Gabor小波变换,得到各个子图像块的局部区域的基于不同频率和方向的特征向量,用于描述高维的木材图像.接着将提取出的纹理特征归一化后送入SVM分类器,检测过程采用二次循环搜索方式,利用特征向量间的相似度进行缺陷的定位和识别.模拟实验结果表明,该方法可有效识别出缺陷区域,识别效果较好.