论文部分内容阅读
为克服符号回归问题经典算法具有搜索时间过长和容易陷入局部最优的缺点,提出一种基于蒙特卡洛树搜索的符号回归算法。将符号空间划分为模型空间和系数空间;在深度策略网络指导下通过蒙特卡洛树搜索实现在模型空间内寻找合适数据集特征的公式模型;在此基础上,使用粒子群算法搜索公式模型下的系数空间,得到适应度最高的公式。实验结果表明,与GP算法相比,该算法具有适应度值更低、不易陷入局部最优的特点。