论文部分内容阅读
以凝胶注模法制备多孔氮化硅陶瓷正交试验结果作为样本,建立3层Back Propagation(BP)神经网络,并进行训练以预测陶瓷性能。通过附加试验值对建立的神经网络预测能力进行验证,证明该BP神经网络模型是有效的,能准确预测多孔氮化硅陶瓷性能。通过BP神经网络模型研究多孔氮化硅陶瓷性能的结果表明,随着固含量的增加,气孔率单调下降;固含量存在一优化值,此时陶瓷抗弯强度最大;单体含量越大,气孔率越大,而抗弯强度降低。