论文部分内容阅读
提出一种遗传优化神经网络与小波范数熵相结合的新型模拟电路故障诊断方法,降低神经网络的结构冗余度和减少过拟合现象。小波范数熵方法提取了故障数据的本质特征,遗传算法优化了神经网络的体系结构,诊断系统实施了模拟数据的故障分类。仿真结果表明,同小波变换预处理的故障诊断系统相比较,这种诊断系统具有更好的网络收敛性能、更高的诊断精确度和更强的推广能力,能对模拟电路故障元件进行有效识别和分类。