论文部分内容阅读
目前面向分类的差分隐私保护算法中,大部分都是基于决策树或者随机森林等树模型。若数据集中同时存在连续数据和离散数据时,算法往往会选择调用2次指数机制,并且进行隐私预算分配时往往选择平均分配。这都使得隐私预算过小、噪声过大、时间成本增加以及分类准确性降低。如何在保证数据隐私的同时尽可能地保证数据可用性,并提高算法性能,成为目前差分隐私保护技术研究的重点。提出了面向决策树和随机森林的差分隐私保护数据挖掘算法,使用Laplace机制来处理离散型特征,使用指数机制处理连续型特征,选择最佳分裂特征和分裂点,并采