论文部分内容阅读
A novel cerium(Ⅲ) salt of Dawson type tungstophosphoric acid(Ce2P2W18O62·16H2O) was prepared by doping cerous nitrate in H6P2W18O62·13H2O powder and characterized by thermogravimetry and differential thermal analyses(TG/DTA),Fourier transform infrared spectroscopy(FT-IR),X-ray powder diffraction(XRD),pyridine infrared spectroscopy(Py-IR) and scanning electron microscopy(SEM).Its catalytic activity was evaluated by the probe reaction of synthesis of n-butyl acetate with acetic acid and n-butanol.The effects of various parameters such as molar ratio of n-butanol to acetic acid,reaction temperature,reaction time,and catalyst amount have been studied by single factor experiment.The results show that Ce2P2W18O62·16H2O behaved as an excellent heterogeneous catalyst in the synthesis of n-butyl acetate.The optimum synthetic conditions were determined as follows︰molar ratio of n-butanol to acetic acid at 2.0︰1.0,mass of the catalyst being 1.44% of the total reaction mixture,reaction temperature of 120 ℃ and reaction time of 150 min.Under above conditions,the conversion of acetic acid was above 97.8%.The selectivity of n-butyl acetate based on acetic acid was,in all cases,nearly 100%.The catalysts could be recycled and still exhibited high catalytic activity with 90.4% conversion after five cycles of reaction.It was found by means of TG-DTA and Py-IR that the catalyst deactivation was due to the adsorption of a complex of by-product on the active sites on catalysts surface or the catalyst loss in its separation from the products.Compared with using sulfuric acid as catalyst,the present procedure with Ce2P2W18O62·16H2O is a green productive technology due to simple process,higher yield,catalyst recycling and no corrosion for the production facilities.