论文部分内容阅读
具有未知输入的系统的状态估计问题已经在过去几十年里引起了相当的关注.本文对于线性离散随机系统提出了一种基于多步信息的输入和状态同步估计方法.首先,采用多步信息的最小方差方法来获得未知输入.由于引入了包含多个时间步骤的扩张状态和测量向量而计算多步信息,使估计结果与一步估计相比减少了对噪声的敏感性.其次,利用输入估计值和卡尔曼滤波估计过去和当前的状态.该方法在未知输入维数等于状态维数时仍然有良好的估计效果.数值仿真验证了提出的估计方法的有效性.最后,该方法应用于厌氧消化过程反应罐中的溶解甲烷和二氧化碳的浓度估