论文部分内容阅读
Aim: There is increasing evidence indicating that embryonic stem (ES) cells are capable of differentiating into hepatocyte-like cells in vitro. However, it is neces- sary to improve the differentiation efficiency so as to promote the clinical application. Here, we report an efficient culture system to support hepatocyte differentiation from ES cells by utilizing cholestatic serum. Methods: One week after the induction of El4 mouse ES cells into hepatocytes with sodium butyrate, cholestatic serum was added into the culture system at various concentrations and hepatocyte-like cells were induced to proliferate. The morphological and phenotypic markers of hepatocytes were characterized using light microscopy, immunocytochemistry, and RT-PCR, respectively. The function of glycogen stor- age of the differentiated cells was detected by Periodic acid-Schiff (PAS) reaction, and the ratio of hepatic differentiation was determined by counting the albumin and PAS-positive cells. Results: In the presence of conditional selective medium containing cholestatic serum, numerous epithelial cells resembling hepatocytes were observed. The RT-PCR analysis showed that undifferentiated ES cells did not express any hepatic-specific markers; however, in the presence of sodium butyrate and conditional selective medium containing cholestatic serum, hepatic differentiation markers were detected. Immunofluorescence staining showed that those ES-derived hepatocytes were α-fetoprotein, albumin, and cytokeratin 18 positive, with the ability of storing glycogen. Further determination of the hepatic differentiation ratio showed that the application of cholestatic serum efficiently enriched ES-derived hepatocyte-like cells by inducing lineage differentiation and enhancing lineage proliferation. Conclusion: The conditional selective medium containing cholestatic serum is optimal to selectively enrich hepatocyte-like cells from mixed differentiated ES cells, which may provide a novel method to improve the hepatic differentiation ratio of ES cells.