论文部分内容阅读
提出了一种改进的RBF神经网络学习算法 ,分别通过减聚类和监督学习算法对网络参数和权值进行训练 ,既可以根据样本合理地聚类、确定RBF径向基函数的个数和相应参数 ,又具有较强的网络映射能力 ,从而不仅使RBF神经网络结构得以优化 ,性能也得到了提高。仿真结果表明了该学习算法的实用性和有效性