论文部分内容阅读
利用经验模态分解(Empirical Mode Decomposition,EMD)的方法将直升机声信号进行分解,得到一系列本征模态分量(Instrinsic Mode Function,IMF)。计算实际直升机声信号及由其分解得到的每个IMF分量的四阶累积量对角切片谱,并由此得到实际信号及每个IMF分量的四阶累积量对角切片谱的幅度绝对值之和E。计算每一个IMF的E值与实际信号E值的比值构成直升机声信号特征矢量。采用神经网络分类器,对两种不同机型的直升机声信号进行分类和识别。仿真实验验证了该方法是可行的、有效的,分类识别取得了较好的效果。