论文部分内容阅读
To make dynamic measurements for an articulate robot, a hand-eye vision measuring system is built up. This system uses two charge coupled device (CCD) cameras mounted on the end-effector of the robot. System analysis is based on the stereovision theory and line-matching technology, using a computer to evaluate the dynamic performance parameters of an articulate robot from the two images captured by the two cameras. The measuring procedure includes four stages, namely, calibration, sampling, image process-ing, and calculation. The path accuracy of an articulate industrial robot was measured by this system. The results show that this system is a low-cost, easy to operate, and simple system for the dynamic performance testing of articulate robots.
To make dynamic measurements for an articulate robot, a hand-eye vision measuring system is built up. This system uses two charge coupled device (CCD) cameras mounted on the end-effector of the robot. System analysis is based on the stereovision theory and line-matching technology, using a computer to evaluate the dynamic performance parameters of an articulate robot from the two images captured by the two cameras. path accuracy of an articulate industrial robot was measured by this system. The results show that this system is a low-cost, easy to operate, and simple system for the dynamic performance testing of articulate robots.