论文部分内容阅读
摘要:由于超高层住宅建筑内部结构的日趋多样化、复杂化,因此,对建筑施工要求和结构设计要求也有所提高。本文结合工程实例,从建筑基础设计、上部结构设计及抗震性能设计等方面分析了超高层住宅建筑结构设计思路,为类似工程结构设计提供参考。
关键词:住宅建筑;结构设计;SATWE软件;抗震性能
中图分类号: TU2 文献标识码: A 文章编号:
随着我国社会经济建设的快速发展,城市化进程不断加快,城镇人口日益增加,致使城市住房建设用地较为紧张,超高层住宅建筑的建设也日益增加。目前,超高層住宅建筑内部结构设计方面的变化愈加明显,许多新兴的结构设计方案逐渐被超高层住宅建筑工程所采用。同时住宅建筑结构类型与使用功能越来越复杂,结构体系日趋多样化,对住宅建筑结构设计工作的要求也不断提高。在超高层建筑建设过程中,部分建筑的结构设计环节并不是十分合理,加上工程设计人员容易出现一些概念性的错误,给建筑的质量安全和使用带来了一定的安全隐患。因此,如何提高超高层住宅建筑结构设计水平,就成为了工程设计人员面临的一项难题。
1 工程概况
某高层住宅建筑面积为29000.4m2,地下1层,地上43层,大屋面高度138.02m。本工程结构体系采用现浇钢筋混凝土剪力墙结构,120m<高度<150m,属于B级高度建筑,楼盖为现浇钢筋砼梁板体系。
建筑抗震设防类别为标准设防类(丙类),结构安全等级为二级,设计使用年限为50年。所在地区的抗震设防烈度为7度,设计基本地震加速度为0.10g,设计地震分组为第二组,场地类别为Ⅲ类,场地特征周期为0.55s,地震影响系数最大值采用0.08,上部结构阻尼比0.05。建筑类别调整后用于抗震验算的烈度为7度,用于确定抗震等级的烈度为7度,剪力墙抗震等级为一级。
2 基础设计
本工程的基础设计等级为甲级,主楼基础采用冲钻孔灌注桩,桩身混凝土强度等级为C35,桩直径为1100mm,单桩竖向承载力特征值为8000kN;桩端持力层中风化凝灰岩(11)层,桩身全断面进入持力层≥1100mm,桩长约50m。桩基全面施工前应进行试打桩及静载试验工作,以确定桩基施工的控制条件和桩竖向抗压承载力特征值。
承台按抗冲切、剪切计算厚度为2700mm,承台面标高为-5.200,基础埋置深度为7.7m(从室外地面起算)。
3 上部结构设计
3.1 超限情况的认定
参照建设部建质[2006]220号《超限高层建筑工程抗震设防专项审查技术要点》附录一“超限高层建筑工程主要范围的参照简表”,结合本工程实际逐条判别,将存在超限的情况汇总如下。
(1)附表一,房屋高度方面
设防烈度为7度,剪力墙结构,总高度138.05m>[120m],超限。
(2)同时具有附表二所列三项及三项以上不规则的高层建筑(因篇幅所限,本文不再详细列出)。
第一项.扭转不规则:考虑偶然偏心的扭转位移比>1.2但<1.3,虽然本条超限,但仅此一项。所以本工程不属于附表二所列的超限高层。
(3)具有附表三某一项不规则的高层建筑工程。根据SATWE计算结果分析、判别,本工程亦不属于表三所列的超限高层。
综上所述,本工程只属于高度超限的超高层建筑。
3.2 上部结构计算分析及结构设计
本工程为剪力墙结构,120m<高度<150m,属于B级高度建筑,按《高层建筑混凝土结构技术规程》(JGJ3-2002)(以下简称高规)5.1.13条规定:
(1)应采用至少两个不同力学模型的三维空间分析软件进行整体内力位移计算。
(2)应采用弹性时程分析法进行整体补充计算。
根据《高规》要求,本工程采用的时程分析计算程序为PKPM系列的SATWE软件,并采用PMSAP软件进行对比分析。
本工程属于纯剪结构,作为抗侧力构件的剪力墙,选用正确的结构分析程序尤为重要。SATWE对剪力墙采用墙元模型来分析其受力状态,这种模型的计算精度比薄壁柱单元高,所以我省大多数工程的结构计算都选用SATWE程序。实际上就有限元理论目前的发展水平来看,用壳元来模拟剪力墙的受力状态是比较切合实际的,因为壳元和剪力墙一样,既有平面内刚度,又有平面外刚度。实际工程中的剪力墙几何尺寸、洞口大小及其空间位置等都有较大的随意性。为了降低剪力墙的几何描述和壳元单元划分的难度,SATWE借鉴了SAP84的墙元概念,在四节点等参平面壳元的基础上,采用静力凝聚原理构造了一种通用墙元,减少了部分剪力墙因墙元细分而增加的内部自由度和数据处理量,虽然提高了分析效率,却影响了剪力墙的分析精度。此外,从理论上讲,如果对楼板采用平面板元或壳元来模拟其真实的受力状态和刚度,对结构整体计算分析比较精确,但是这样处理会增加许多计算工作。在实际工程结构分析中,多采用“楼板平面内无限刚”假定,以达到减少自由度,简化结构分析的目的,这对于某些工程可能导致较大的计算误差。SATWE对于楼板采用了以下几种假定:(1)楼板平面内无限刚;(2)楼板分块平面内无限刚;(3)楼板分块平面内无限刚,并带有弹性连接板;(4)楼板为弹性连接板。对弹性楼板实际上是以PMCAD前处理数据中的一个房间的楼板作为一个超单元,内部自由度被凝聚了,计算结果具有一定的近似性,某种程度上影响了分析精度。根据高规要求,本工程应采用两个不同力学模型的三维空间分析软件进行整体内力位移计算,由于PMSAP对剪力墙和楼板都采用了比较精确的有限元分析,单元模型更接近结构的真实受力状态,虽然数据处理量大大增加,但其分析精度却比SATWE高。用PMSAP软件对SATWE程序的计算结果进行分析、校核,是比较可信的。
SATWE和PMSAP两个程序均采用弹性时程分析法进行多遇地震下的补充计算,弹性时程分析法计算结果作为振型分解反应谱法的补充。
程分析主要结果汇总如下:
表1 结构模态信息
表2 地震荷载(反应谱法)和风荷载下计算得到的结构最大响应
多遇地震时弹性时程分析所取的地面运动加速度时程的最大值为35cm/s2。针对报告中提供的实际强震记录和人工模拟的加速度时程曲线,根据08版抗震规范要求,本工程选择了两条天然波和一条人工波。这三条波的时程曲线计算所得结构底部剪力均大于振型分解反应谱法计算结果的65%,且三条时程曲线计算所得结构底部剪力的平均值亦大于振型分解反应谱法(以下简称CQC)计算结果的80%。由此可见本工程选择的地震波是满足规范及设计要求的。
SATWE和PMSAP时程分析的楼层剪力曲线如(图1、图2)所示。
图1 SATWE时程分析楼层剪力图
图2 PMSAP时程分析楼层剪力图
比较上图振型分解反应谱法(CQC)计算的楼层剪力曲线图,在大部分楼层基本能包络时程分析曲线,仅电算34层以上CQC法计算楼层剪力略小于时程分析的结果。由此可见振型分解反应谱法用于本工程的抗震分析是安全可靠的。设计中仍以振型分解反应谱法计算结果为主,并将34层以上部分指定为薄弱层,该部分楼层地震剪力予以放大。这一方案也得到了本工程超限高层审查与会专家的认可。
比较PMSAP和SATWE计算出的基底剪力非常接近,其余参数如周期、结构的总质量、地震荷载和风荷载下计算得到的结构最大响应位移、地震下的剪重比等都比较接近,说明用这两个程序做计算分析是可以互相校核的。
3 抗震性能设计
本工程综合考虑设防烈度,场地条件,房屋高度,不规则的部位和程度等因素,本工程只属于高度超限的超高层建筑,且高度只超过A级而未超过B级,故将本工程预期抗震性能目标定位在“D”级,即为小震下满足性能水准1的要求,中震满足性能水准4的要求,大震下满足性能水准5的要求。
普通的高层结构抗震设计基于小振弹性设计,对于本超高层结构作为主要承重构件的剪力墙,尤其是底部加强区需要提高其抗震承载能力。根据抗震概念设计“强柱弱梁、强剪弱弯”的要求,剪力墙也需要有更高的抗震安全储备,所以本工程剪力墙底部加强区采用中震设计。具体措施如下:
(1)根据安评报告中震设计的地震影响系数最大值采用0.23,不考虑与抗震等级有关的内力增大系数(即剪力墙抗震等级定为四级),不计入风荷载的组合效应。
(2)抗剪验算按中震弹性设计,考虑重力荷载与地震作用组合的分项系数,材料强度取设计值,考虑抗震承载力调整系数。计算结果作为剪力墙底部加强区水平筋的配筋依据。
(3)抗弯验算按中震不屈服设计,不考虑重力荷载与地震作用组合的分项系数,材料强度取標准值,不考虑抗震承载力调整系数。计算结果作为剪力墙底部加强区约束边缘构件竖向钢筋的配筋依据。
本工程通过对关键构件剪力墙底部加强区进行中震设计,即抗弯承载力按中震不屈服复核,抗剪承载力按中震弹性复核,结构能满足性能水准1、4的要求,预估结构在大震作用下能满足性能水准5的要求。各性能水准目标具体描述如下:
性能水准1:结构在遭受多遇地震后完好,无损伤,一般不需修理即可继续使用,人们不会因结构损伤造成伤害,可安全出入和使用。
性能水准4:遭受设防烈度地震后结构的重要部位构件轻微损坏,出现轻微裂缝,其他部位普通构件及耗能构件发生中等损害。
性能水准5:结构在预估的罕遇地震下发生比较严重的损坏,耗能构件及部分普通构件损坏比较严重,关键构件中等损坏,有明显裂缝,结构需要排险大修。
4 结论
通过工程实例分析超高层住宅建筑结构设计工作,可以得出以下几点结论:①PMSAP和SATWE计算结果的比较表明了SATWE计算结果进行结构设计是基本可靠的;②采用合理的方法对部分楼层剪力进行了调整,能够有效确保工程抗震分析安全、可靠;③对剪力墙底部加强区采用中震设计,能够满足住宅建筑的抗震需要。
参考文献
[1] 赵东晓.高层建筑结构设计的问题与对策研究[J].商品混凝土.2012年第09期
[2] 黄英波.超高层建筑结构设计分析[J].城市建设理论研究.2012年第05期
关键词:住宅建筑;结构设计;SATWE软件;抗震性能
中图分类号: TU2 文献标识码: A 文章编号:
随着我国社会经济建设的快速发展,城市化进程不断加快,城镇人口日益增加,致使城市住房建设用地较为紧张,超高层住宅建筑的建设也日益增加。目前,超高層住宅建筑内部结构设计方面的变化愈加明显,许多新兴的结构设计方案逐渐被超高层住宅建筑工程所采用。同时住宅建筑结构类型与使用功能越来越复杂,结构体系日趋多样化,对住宅建筑结构设计工作的要求也不断提高。在超高层建筑建设过程中,部分建筑的结构设计环节并不是十分合理,加上工程设计人员容易出现一些概念性的错误,给建筑的质量安全和使用带来了一定的安全隐患。因此,如何提高超高层住宅建筑结构设计水平,就成为了工程设计人员面临的一项难题。
1 工程概况
某高层住宅建筑面积为29000.4m2,地下1层,地上43层,大屋面高度138.02m。本工程结构体系采用现浇钢筋混凝土剪力墙结构,120m<高度<150m,属于B级高度建筑,楼盖为现浇钢筋砼梁板体系。
建筑抗震设防类别为标准设防类(丙类),结构安全等级为二级,设计使用年限为50年。所在地区的抗震设防烈度为7度,设计基本地震加速度为0.10g,设计地震分组为第二组,场地类别为Ⅲ类,场地特征周期为0.55s,地震影响系数最大值采用0.08,上部结构阻尼比0.05。建筑类别调整后用于抗震验算的烈度为7度,用于确定抗震等级的烈度为7度,剪力墙抗震等级为一级。
2 基础设计
本工程的基础设计等级为甲级,主楼基础采用冲钻孔灌注桩,桩身混凝土强度等级为C35,桩直径为1100mm,单桩竖向承载力特征值为8000kN;桩端持力层中风化凝灰岩(11)层,桩身全断面进入持力层≥1100mm,桩长约50m。桩基全面施工前应进行试打桩及静载试验工作,以确定桩基施工的控制条件和桩竖向抗压承载力特征值。
承台按抗冲切、剪切计算厚度为2700mm,承台面标高为-5.200,基础埋置深度为7.7m(从室外地面起算)。
3 上部结构设计
3.1 超限情况的认定
参照建设部建质[2006]220号《超限高层建筑工程抗震设防专项审查技术要点》附录一“超限高层建筑工程主要范围的参照简表”,结合本工程实际逐条判别,将存在超限的情况汇总如下。
(1)附表一,房屋高度方面
设防烈度为7度,剪力墙结构,总高度138.05m>[120m],超限。
(2)同时具有附表二所列三项及三项以上不规则的高层建筑(因篇幅所限,本文不再详细列出)。
第一项.扭转不规则:考虑偶然偏心的扭转位移比>1.2但<1.3,虽然本条超限,但仅此一项。所以本工程不属于附表二所列的超限高层。
(3)具有附表三某一项不规则的高层建筑工程。根据SATWE计算结果分析、判别,本工程亦不属于表三所列的超限高层。
综上所述,本工程只属于高度超限的超高层建筑。
3.2 上部结构计算分析及结构设计
本工程为剪力墙结构,120m<高度<150m,属于B级高度建筑,按《高层建筑混凝土结构技术规程》(JGJ3-2002)(以下简称高规)5.1.13条规定:
(1)应采用至少两个不同力学模型的三维空间分析软件进行整体内力位移计算。
(2)应采用弹性时程分析法进行整体补充计算。
根据《高规》要求,本工程采用的时程分析计算程序为PKPM系列的SATWE软件,并采用PMSAP软件进行对比分析。
本工程属于纯剪结构,作为抗侧力构件的剪力墙,选用正确的结构分析程序尤为重要。SATWE对剪力墙采用墙元模型来分析其受力状态,这种模型的计算精度比薄壁柱单元高,所以我省大多数工程的结构计算都选用SATWE程序。实际上就有限元理论目前的发展水平来看,用壳元来模拟剪力墙的受力状态是比较切合实际的,因为壳元和剪力墙一样,既有平面内刚度,又有平面外刚度。实际工程中的剪力墙几何尺寸、洞口大小及其空间位置等都有较大的随意性。为了降低剪力墙的几何描述和壳元单元划分的难度,SATWE借鉴了SAP84的墙元概念,在四节点等参平面壳元的基础上,采用静力凝聚原理构造了一种通用墙元,减少了部分剪力墙因墙元细分而增加的内部自由度和数据处理量,虽然提高了分析效率,却影响了剪力墙的分析精度。此外,从理论上讲,如果对楼板采用平面板元或壳元来模拟其真实的受力状态和刚度,对结构整体计算分析比较精确,但是这样处理会增加许多计算工作。在实际工程结构分析中,多采用“楼板平面内无限刚”假定,以达到减少自由度,简化结构分析的目的,这对于某些工程可能导致较大的计算误差。SATWE对于楼板采用了以下几种假定:(1)楼板平面内无限刚;(2)楼板分块平面内无限刚;(3)楼板分块平面内无限刚,并带有弹性连接板;(4)楼板为弹性连接板。对弹性楼板实际上是以PMCAD前处理数据中的一个房间的楼板作为一个超单元,内部自由度被凝聚了,计算结果具有一定的近似性,某种程度上影响了分析精度。根据高规要求,本工程应采用两个不同力学模型的三维空间分析软件进行整体内力位移计算,由于PMSAP对剪力墙和楼板都采用了比较精确的有限元分析,单元模型更接近结构的真实受力状态,虽然数据处理量大大增加,但其分析精度却比SATWE高。用PMSAP软件对SATWE程序的计算结果进行分析、校核,是比较可信的。
SATWE和PMSAP两个程序均采用弹性时程分析法进行多遇地震下的补充计算,弹性时程分析法计算结果作为振型分解反应谱法的补充。
程分析主要结果汇总如下:
表1 结构模态信息
表2 地震荷载(反应谱法)和风荷载下计算得到的结构最大响应
多遇地震时弹性时程分析所取的地面运动加速度时程的最大值为35cm/s2。针对报告中提供的实际强震记录和人工模拟的加速度时程曲线,根据08版抗震规范要求,本工程选择了两条天然波和一条人工波。这三条波的时程曲线计算所得结构底部剪力均大于振型分解反应谱法计算结果的65%,且三条时程曲线计算所得结构底部剪力的平均值亦大于振型分解反应谱法(以下简称CQC)计算结果的80%。由此可见本工程选择的地震波是满足规范及设计要求的。
SATWE和PMSAP时程分析的楼层剪力曲线如(图1、图2)所示。
图1 SATWE时程分析楼层剪力图
图2 PMSAP时程分析楼层剪力图
比较上图振型分解反应谱法(CQC)计算的楼层剪力曲线图,在大部分楼层基本能包络时程分析曲线,仅电算34层以上CQC法计算楼层剪力略小于时程分析的结果。由此可见振型分解反应谱法用于本工程的抗震分析是安全可靠的。设计中仍以振型分解反应谱法计算结果为主,并将34层以上部分指定为薄弱层,该部分楼层地震剪力予以放大。这一方案也得到了本工程超限高层审查与会专家的认可。
比较PMSAP和SATWE计算出的基底剪力非常接近,其余参数如周期、结构的总质量、地震荷载和风荷载下计算得到的结构最大响应位移、地震下的剪重比等都比较接近,说明用这两个程序做计算分析是可以互相校核的。
3 抗震性能设计
本工程综合考虑设防烈度,场地条件,房屋高度,不规则的部位和程度等因素,本工程只属于高度超限的超高层建筑,且高度只超过A级而未超过B级,故将本工程预期抗震性能目标定位在“D”级,即为小震下满足性能水准1的要求,中震满足性能水准4的要求,大震下满足性能水准5的要求。
普通的高层结构抗震设计基于小振弹性设计,对于本超高层结构作为主要承重构件的剪力墙,尤其是底部加强区需要提高其抗震承载能力。根据抗震概念设计“强柱弱梁、强剪弱弯”的要求,剪力墙也需要有更高的抗震安全储备,所以本工程剪力墙底部加强区采用中震设计。具体措施如下:
(1)根据安评报告中震设计的地震影响系数最大值采用0.23,不考虑与抗震等级有关的内力增大系数(即剪力墙抗震等级定为四级),不计入风荷载的组合效应。
(2)抗剪验算按中震弹性设计,考虑重力荷载与地震作用组合的分项系数,材料强度取设计值,考虑抗震承载力调整系数。计算结果作为剪力墙底部加强区水平筋的配筋依据。
(3)抗弯验算按中震不屈服设计,不考虑重力荷载与地震作用组合的分项系数,材料强度取標准值,不考虑抗震承载力调整系数。计算结果作为剪力墙底部加强区约束边缘构件竖向钢筋的配筋依据。
本工程通过对关键构件剪力墙底部加强区进行中震设计,即抗弯承载力按中震不屈服复核,抗剪承载力按中震弹性复核,结构能满足性能水准1、4的要求,预估结构在大震作用下能满足性能水准5的要求。各性能水准目标具体描述如下:
性能水准1:结构在遭受多遇地震后完好,无损伤,一般不需修理即可继续使用,人们不会因结构损伤造成伤害,可安全出入和使用。
性能水准4:遭受设防烈度地震后结构的重要部位构件轻微损坏,出现轻微裂缝,其他部位普通构件及耗能构件发生中等损害。
性能水准5:结构在预估的罕遇地震下发生比较严重的损坏,耗能构件及部分普通构件损坏比较严重,关键构件中等损坏,有明显裂缝,结构需要排险大修。
4 结论
通过工程实例分析超高层住宅建筑结构设计工作,可以得出以下几点结论:①PMSAP和SATWE计算结果的比较表明了SATWE计算结果进行结构设计是基本可靠的;②采用合理的方法对部分楼层剪力进行了调整,能够有效确保工程抗震分析安全、可靠;③对剪力墙底部加强区采用中震设计,能够满足住宅建筑的抗震需要。
参考文献
[1] 赵东晓.高层建筑结构设计的问题与对策研究[J].商品混凝土.2012年第09期
[2] 黄英波.超高层建筑结构设计分析[J].城市建设理论研究.2012年第05期