论文部分内容阅读
针对机场货运量预测不能满足机场实际运行精度等缺点,提出一种季节性ARIMA和RBF神经网络集成模型预测机场货运量,该模型首先利用季节性ARIMA模型预测机场货运量线性部分,然后用RBF神经网络模型预测机场货运量非线性部分.最后把非线性部分预测结果作为线性部分预测结果的补偿.得到最终预测结果。实验结果表明,新模型可以有效结合季节性ARIMA和RBF神经网络各自的优点;相对单一季节性ARIMA模型和单一RBF神经网络模型预测精度分别提高了6.30%和3.32%,预测精度满足机场实际运行要求。