论文部分内容阅读
【摘 要】采矿系统工程是新兴科学,文章基于采矿系统工程是根据采矿工程内在规律和基本原理,以系统论和现代数学方法研究和解决采矿工程综合优化问题的新兴科学,阐述了如何运用采矿系统工程的全新理论与现代科学技术,其研究成果和广泛应用将愈来愈显著。
【关键词】采矿系统;新兴科学;基本原理;技术
1.前言
1.1系统工程研究的目的
系统工程是从整体出发合理开发、设计、实施和运用系统的工程技术。根据总体协调的需要,综合应用自然科学和社会科学中的有关思想、理论和方法,利用电子计算机作为工具,对系统的结构、要素、信息和反馈进行分析,以达到最优规划、最优设计、最优管理和最优控制的目的。
1.2系统工程研究的对象
系统工程研究的对象往往是复杂的大系统乃至巨系统。系统的复杂性体现在:A、构成系统的要素本身往往就是一个系统或子系统,从而体现了系统的多层次性;B、系统涉及的因素往往是多维的(时间维、逻辑维、知识维);C、系统是由不同质的要素集合而成的;D、系统可以是包含人在内的人―机系统。[1]
2.采矿系统工程
采矿系统工程是根据采矿工程内在规律和基本原理,以系统论和现代数学方法研究和解决采矿工程综合优化问题。[1]把具有先进科学技术含量的系统工程学与传统的单一的采矿工程学相结合,形成采矿系统工程学,这是近些年来采矿工作者潜心研究形成的一门新兴学科。
2.1采矿系统工程能够迅速得到重视和应用的原因
2.1.1整体性
采矿工程涉及面广、作业点分散、影响因素多,需要从总体上进行全面协调,而这正是系统工程的特长。以往的采矿工程,往往侧重于单个作业或环节,运用系统工程,使人们科学地从总体上整合采矿问题,在矿山规划、设计和评估中表现尤为突出。
2.1.2边缘性
采矿工程涉及许多学科,过去有脱节的现象。通过系统工程,人们研究学科之间的相互渗透和交叉,出现安全系统工程、边坡系统工程、地质统计学、系统模拟技术、人工智能技术、虚拟现实技术等边缘学科。
2.1.3先进性
采矿工程是一门古老的技术,常常依赖于经验判断而不是精密计算。通过采矿系统工程引入各种现代数理统计数据、管理信息系统以及计算机技术,可以将许多定性分析转化为定量决策,大大提高了采矿工程的科学性。
2.2采矿系统工程具有的特点
采矿系统工程在处理问题时,要考虑采矿工业受外界影响因素多的特点。因此,多目标决策、模糊决策、人工智能、计算机辅助设计等系统工程技术在矿业界的应用就显得十分重要。
2.3采矿系统工程的应用范围
目前国内外用系统工程方法研究采矿工程问题,已涉及相当广泛的领域,从矿床估值与评价,到采矿生产过程的优化管理与控制,都有可观的研究成果出现。
(1)矿床赋存条件的分析与评价:如矿床模型的建立,矿床资源条件评价等。
(2)矿山开采设计规划:如矿山开采方法,开采工艺及设备选型,矿井及露天矿开采境界的圈定,矿山生产能力及边界品位的优化,矿井及采区设计,露天矿长远设计,矿山短期生产计划,矿区发展规划等。
(3)矿山建设及项目评价:如新建或改扩建矿山投资项目的评价,矿井或露天矿建设过程的优化等。
3.采矿系统工程在采区设计方案优化中的应用
3.1采区方案设计
采区设计通常分为二个阶段进行,即确定采区主要技术特征的采区方案设计和根据批准的方案设计而进行的采区单位工程施工图设计。采区方案设计除了需要阐述采区范围、地质条件、煤层赋存情况、采区生产能力、采区储量及服务年限等基本情况外,应着重论证和确定以下问题:采准巷道的布置方式及生产系统、采煤方法选择、采掘工作面的工艺装备、采区参数、采区机电设备的选型与布置、安全技术措施等。
3.2方案优化
采矿工程专业毕业设计中所要进行的矿井采区设计,采用采矿系统工程理论与技术来进行,克服以往人工方案比较的局限性。人工进行采区设计方案比较一般只有2~3个方案,最多5~6个方案,且依赖少数专家经验判断进行决策,而采用采矿系统工程理论与技术方法来进行方案比较,由于采用了技术经济数学模型和电子计算机运算,所提出的设计方案经过数理组合可以达到十多个,甚至几十个,从而使选优的范围更加广泛,计算更加精确,方案优化更加科学性,摆脱了经验判断的局限性。
3.3优化内容
采区优化设计内容包括两个方面:一是选择采煤方法、采区机械设备;二是确定采区巷道布置系统及其主要参数。巷道布置系统一经确定,并进行施工投入生产后,在采区整个生产期间内基本上不能改变,它是采区设计优劣的主要标志。利用采矿系统工程进行采区优化设计的重点是解决采区巷道布置方案及其主要参数的选择。
3.4优化方法
优化所采用的主要方法有:线性规划、整数规划、非线性规划、动态规划、图论及网络分析、决策论、对策论、系统模拟、人工智能学、计算机辅助设计等。
4.采区优化设计
4.1采区优化设计的主要内容
从技术的层面出发,根據采区的具体情况来布置巷道的形式和参数的选取,使得最后的开采能力达到最大,保证采矿系统工程的顺利进行。[3]
对采区进行优化的过程为:选定优化原则,多指标和单指标编制数学模型;依据采区中的煤层厚度,在可行的方案的基础之上采用最佳的巷道布置形式;选取对参数进行优化时参数的取值区间,包括上界和下界。对优化需要的数据进行收集和整理并存入计算机中;利用计算机进行操作,计算出优化的结果;对优化的结果进行客观分析,当出现反常情况时,对存入计算机的数据进行检查,直至计算机输出的优化结果最佳时停止。 4.2对技术可行的方案进行初步选择
为了最大化地扩大采区优化模型的应用区间及其适应性,应当全面考虑会出现的所有状况,在实际操作过程中,对于给出了一些可行的设计方案时,应当需要结合采区的具体情况来分析选择出最合适的方案。
4.2.1倾斜长壁和走向长壁式开采
就当前回采工作面中所用到的機器和技术条件来说,倾斜长壁开采只能适应以下两种煤层:倾斜断层多或者地质的构造不复杂的煤层,煤层倾角比15°小。所以当煤层不属于上面那两种是可以抛弃倾斜长壁的开采方式。
4.2.2采区与工作面生产能力的上限
技术上能够选用的上限应当选取为采区生与工作面中所有环节中生产能力最大时的最小值。[4]当选用综合机械化来开采时,回采工作面的生产能力主要由通风能力控制。一般情况下高沼气矿井的上限为3000t/d,低沼气矿井的上限是4000t/d;普通开采时主要的限制因素是支架的速度,高档普采时最高为3000t/d或者采用采区联合布置的方式。
当煤层数多于2时,所增加的巷道掘进资金相对于巷道的维护所需资金的大小决定了是否采用联合方式来布置区段集中平巷,采区下山或者上山。这能通过简易的计算后决定取舍。
4.2.3双翼和单翼采区
双翼采区能够服务的时间比较久,采区走向的长度也比较大,因此能够布置的工作面比较多,对采区和工作面的正常接替有益。采区石门,下山或者上山、车场的挖掘工程量相对比较少,上山煤柱的损失不是那么大。因此在不考虑一些特殊条件或者自然条件的前提下一般不选用单翼采区。
结束语
采矿系统是一个复杂的动态系统,采矿系统是一个多目标、多因素、多变量的、随机性因素影响很强的、生产对象和作业环境变化很大的、多种技术互相作用下的复杂的动态系统。对于如此复杂的动态系统,运用采矿系统工程中的优化理论和技术方法,来进行采区设计优化,能收到十分明显的效果,为采区设计优化开拓了广阔的前景,摒弃了人工经验判断进行方案选择的局限性,进而使用电子计算机在多达几十个待选可行方案中进行优化,更加科学化、规范化、系统化、现代化。
参考文献:
[1]张幼蒂,王玉浚.采矿系统工程[M].徐州:中国矿业大学出版社,2000.
[2]曹允伟,王春城,吕梦蛟.煤矿开采方法[M].北京:煤炭工业出版社,2005.
[3]徐永圻.煤矿开采学[M].徐州:中国矿业大学出版,1999.
【关键词】采矿系统;新兴科学;基本原理;技术
1.前言
1.1系统工程研究的目的
系统工程是从整体出发合理开发、设计、实施和运用系统的工程技术。根据总体协调的需要,综合应用自然科学和社会科学中的有关思想、理论和方法,利用电子计算机作为工具,对系统的结构、要素、信息和反馈进行分析,以达到最优规划、最优设计、最优管理和最优控制的目的。
1.2系统工程研究的对象
系统工程研究的对象往往是复杂的大系统乃至巨系统。系统的复杂性体现在:A、构成系统的要素本身往往就是一个系统或子系统,从而体现了系统的多层次性;B、系统涉及的因素往往是多维的(时间维、逻辑维、知识维);C、系统是由不同质的要素集合而成的;D、系统可以是包含人在内的人―机系统。[1]
2.采矿系统工程
采矿系统工程是根据采矿工程内在规律和基本原理,以系统论和现代数学方法研究和解决采矿工程综合优化问题。[1]把具有先进科学技术含量的系统工程学与传统的单一的采矿工程学相结合,形成采矿系统工程学,这是近些年来采矿工作者潜心研究形成的一门新兴学科。
2.1采矿系统工程能够迅速得到重视和应用的原因
2.1.1整体性
采矿工程涉及面广、作业点分散、影响因素多,需要从总体上进行全面协调,而这正是系统工程的特长。以往的采矿工程,往往侧重于单个作业或环节,运用系统工程,使人们科学地从总体上整合采矿问题,在矿山规划、设计和评估中表现尤为突出。
2.1.2边缘性
采矿工程涉及许多学科,过去有脱节的现象。通过系统工程,人们研究学科之间的相互渗透和交叉,出现安全系统工程、边坡系统工程、地质统计学、系统模拟技术、人工智能技术、虚拟现实技术等边缘学科。
2.1.3先进性
采矿工程是一门古老的技术,常常依赖于经验判断而不是精密计算。通过采矿系统工程引入各种现代数理统计数据、管理信息系统以及计算机技术,可以将许多定性分析转化为定量决策,大大提高了采矿工程的科学性。
2.2采矿系统工程具有的特点
采矿系统工程在处理问题时,要考虑采矿工业受外界影响因素多的特点。因此,多目标决策、模糊决策、人工智能、计算机辅助设计等系统工程技术在矿业界的应用就显得十分重要。
2.3采矿系统工程的应用范围
目前国内外用系统工程方法研究采矿工程问题,已涉及相当广泛的领域,从矿床估值与评价,到采矿生产过程的优化管理与控制,都有可观的研究成果出现。
(1)矿床赋存条件的分析与评价:如矿床模型的建立,矿床资源条件评价等。
(2)矿山开采设计规划:如矿山开采方法,开采工艺及设备选型,矿井及露天矿开采境界的圈定,矿山生产能力及边界品位的优化,矿井及采区设计,露天矿长远设计,矿山短期生产计划,矿区发展规划等。
(3)矿山建设及项目评价:如新建或改扩建矿山投资项目的评价,矿井或露天矿建设过程的优化等。
3.采矿系统工程在采区设计方案优化中的应用
3.1采区方案设计
采区设计通常分为二个阶段进行,即确定采区主要技术特征的采区方案设计和根据批准的方案设计而进行的采区单位工程施工图设计。采区方案设计除了需要阐述采区范围、地质条件、煤层赋存情况、采区生产能力、采区储量及服务年限等基本情况外,应着重论证和确定以下问题:采准巷道的布置方式及生产系统、采煤方法选择、采掘工作面的工艺装备、采区参数、采区机电设备的选型与布置、安全技术措施等。
3.2方案优化
采矿工程专业毕业设计中所要进行的矿井采区设计,采用采矿系统工程理论与技术来进行,克服以往人工方案比较的局限性。人工进行采区设计方案比较一般只有2~3个方案,最多5~6个方案,且依赖少数专家经验判断进行决策,而采用采矿系统工程理论与技术方法来进行方案比较,由于采用了技术经济数学模型和电子计算机运算,所提出的设计方案经过数理组合可以达到十多个,甚至几十个,从而使选优的范围更加广泛,计算更加精确,方案优化更加科学性,摆脱了经验判断的局限性。
3.3优化内容
采区优化设计内容包括两个方面:一是选择采煤方法、采区机械设备;二是确定采区巷道布置系统及其主要参数。巷道布置系统一经确定,并进行施工投入生产后,在采区整个生产期间内基本上不能改变,它是采区设计优劣的主要标志。利用采矿系统工程进行采区优化设计的重点是解决采区巷道布置方案及其主要参数的选择。
3.4优化方法
优化所采用的主要方法有:线性规划、整数规划、非线性规划、动态规划、图论及网络分析、决策论、对策论、系统模拟、人工智能学、计算机辅助设计等。
4.采区优化设计
4.1采区优化设计的主要内容
从技术的层面出发,根據采区的具体情况来布置巷道的形式和参数的选取,使得最后的开采能力达到最大,保证采矿系统工程的顺利进行。[3]
对采区进行优化的过程为:选定优化原则,多指标和单指标编制数学模型;依据采区中的煤层厚度,在可行的方案的基础之上采用最佳的巷道布置形式;选取对参数进行优化时参数的取值区间,包括上界和下界。对优化需要的数据进行收集和整理并存入计算机中;利用计算机进行操作,计算出优化的结果;对优化的结果进行客观分析,当出现反常情况时,对存入计算机的数据进行检查,直至计算机输出的优化结果最佳时停止。 4.2对技术可行的方案进行初步选择
为了最大化地扩大采区优化模型的应用区间及其适应性,应当全面考虑会出现的所有状况,在实际操作过程中,对于给出了一些可行的设计方案时,应当需要结合采区的具体情况来分析选择出最合适的方案。
4.2.1倾斜长壁和走向长壁式开采
就当前回采工作面中所用到的機器和技术条件来说,倾斜长壁开采只能适应以下两种煤层:倾斜断层多或者地质的构造不复杂的煤层,煤层倾角比15°小。所以当煤层不属于上面那两种是可以抛弃倾斜长壁的开采方式。
4.2.2采区与工作面生产能力的上限
技术上能够选用的上限应当选取为采区生与工作面中所有环节中生产能力最大时的最小值。[4]当选用综合机械化来开采时,回采工作面的生产能力主要由通风能力控制。一般情况下高沼气矿井的上限为3000t/d,低沼气矿井的上限是4000t/d;普通开采时主要的限制因素是支架的速度,高档普采时最高为3000t/d或者采用采区联合布置的方式。
当煤层数多于2时,所增加的巷道掘进资金相对于巷道的维护所需资金的大小决定了是否采用联合方式来布置区段集中平巷,采区下山或者上山。这能通过简易的计算后决定取舍。
4.2.3双翼和单翼采区
双翼采区能够服务的时间比较久,采区走向的长度也比较大,因此能够布置的工作面比较多,对采区和工作面的正常接替有益。采区石门,下山或者上山、车场的挖掘工程量相对比较少,上山煤柱的损失不是那么大。因此在不考虑一些特殊条件或者自然条件的前提下一般不选用单翼采区。
结束语
采矿系统是一个复杂的动态系统,采矿系统是一个多目标、多因素、多变量的、随机性因素影响很强的、生产对象和作业环境变化很大的、多种技术互相作用下的复杂的动态系统。对于如此复杂的动态系统,运用采矿系统工程中的优化理论和技术方法,来进行采区设计优化,能收到十分明显的效果,为采区设计优化开拓了广阔的前景,摒弃了人工经验判断进行方案选择的局限性,进而使用电子计算机在多达几十个待选可行方案中进行优化,更加科学化、规范化、系统化、现代化。
参考文献:
[1]张幼蒂,王玉浚.采矿系统工程[M].徐州:中国矿业大学出版社,2000.
[2]曹允伟,王春城,吕梦蛟.煤矿开采方法[M].北京:煤炭工业出版社,2005.
[3]徐永圻.煤矿开采学[M].徐州:中国矿业大学出版,1999.