论文部分内容阅读
滚动轴承早期故障信号具有能量小、频带分布宽等特征,易受到其他能量较大的振源信号的干扰,致使传统滤波降噪方法存在很大的局限性。针对这一特点,提出经验模式分解(EMD)和独立分量分析(ICA)相结合的联合降噪新方法。将单通道振动信号进行EMD分解,基于互相关准则对分解后的本征模函数进行重组,构造虚拟噪声通道,并以此作为ICA的输入矩阵,采用FastICA算法实现源信号和噪声信号的分离,从而达到降噪的目的。将该方法应用于滚动轴承故障诊断中,对降噪后的重构信号进行频谱分析,进而判断滚动轴承的运行状态。仿真和试验分