采用HOG特征和机器学习的行人检测方法

来源 :华侨大学学报(自然科学版) | 被引量 : 26次 | 上传用户:falinglord
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对基于方向梯度直方图(HOG)/线性支持向量机(SVM)算法的行人检测方法中存在检测速度慢的问题,提出一种将HOG特征与Adaboost-BP模型相结合的行人检测方法.利用边缘检测技术快速检测出行人候选区域,提取出多尺度多方向的HOG特征,利用Adaboost算法训练多个反向传播神经网络用于构建强分类器,实现对测试样本图像的检测识别.结果表明:文中方法具有更高的检测率、更低的误报率和漏检率,具有较好的检测效果.
其他文献
为研究露天转地下开采条件下,高陡边坡与地下采场围岩的变形和应力变化规律,研制出一种高陡边坡露天转地下开采模型试验系统.该系统由开采模拟方法和开采模拟系统组成,其中,
利用圆形标志点的几何和灰度特征,在图像中搜索具有符合该特征描述的区域,对圆形标志点进行粗定位.对粗定位区域的扩展区域使用最大类间方差阈值分割法分割出圆形标志点轮廓,
历史的时钟,即将把2006年变成回忆。不知不觉,又是新一轮的辞旧迎新!盘点2006这一年:农机行业,又是难以忘却的一年;农机人,在高速发展中享受了一个接一个的“幸福时刻”。
期刊
针对视觉跟踪中运动目标鲁棒性跟踪问题,结合高斯核函数和卷积神经网络(CNN),提出一种无需训练的卷积神经网络提取深度特征的视觉跟踪算法.首先,对初始图像进行归一化处理并聚类提取目标信息,结合跟踪过程中目标信息共同作为卷积网络结构中的各阶滤波器;其次,通过高斯核函数来提高卷积运算速度,提取目标简单抽象特征;最后,通过叠加简单层的卷积结果得到目标的深层次表达,并结合粒子滤波跟踪框架实现跟踪.结果表明: