论文部分内容阅读
解答应用题是一项较复杂的思维活动。小学应用题的教学任务就是要在引导学生正确解答各类应用题的同时,培养学生的思维能力。而良好思维品质的培养,则是思维训练获得高效率的有力保证。我多年承担高年级数学教学,面对学生对应用题的“苦恼”,自己一直在探索这方面的教学方法,现就自己的体会谈谈在小学数学应用题教学中,如何更好地激活学生思维。
1 认真审题,揭示联系,培养思维的流畅性
在应用题教学中,学生能否正确的解答应用题,首先是审题,我注意从读题入手,引导学生认真审题。具体做法是:①熟悉性的读,分清题中的情节、条件和问题。读完后,不看书想一想,用自己的话说一说题目中的意思;②批划性的读,即用自己喜欢的、不同的符号将题中表达情节和数量关系的词语划下来,帮助理解题意,疑难之处也应标出来;③推理性的读,以弄清条件与条件,问题与问题之间的联系,寻求解题的基本途径,明确解题思路的指向。
一题多问,也是培养学生思维流畅性的好形式。如给学生一组条件:“西村小学五年级有拉生50人,女生40人”。要求多方位地提出新颖的问题。同学们经过独立思考,小组议论,提出如下一些问题:①五年级共多少人?②男生它女生多多少人?③女生它男生少多少人?④男生是女生的几倍?⑤女生是男生的几分之几?⑥男、女生各占总数的几分之几?⑦女生是男生的几分之几?⑧男生它女生多百分之几?⑨女生它男生少百分之几?⑩男生和女生的人数它是多少?……使他们的思维多方面、多层次地扩散,为提出多种解题方法创造条件。
2 合理想象,多向探求,培养思维的灵活性
为了培养学生思维的灵活性,我注意引导学生根据不同条件,展开合理的想象、推理。例如:从“一本书80页,小红第一天看了全书的40%,第二天看了全书的30%”三个条件中,可以想象出什么结果。经过思考后学生提出:①从第一个条件和第二个条件可知小红第一天读书的页数;②从第一条件和第三个条件中可知小红第二天读的页数;③从第二个条件和第三个条件中可知:a.两天共看56页;b.还剩24页没看;c.第一天比第二天多看8页;d.第一天看的是第二天的1;④从以上三个条件可知:a.两天共看45页;b.还剩24页没看;c.第一天比第二天多看8页;d.两天看的页数的比是4:3,……通过训练,学生思维的灵活性得到了锻炼;解题思路它以前活跃,化难为易的本领也逐步具备了。
让学生掌握条件与条件、条件与问题,深刻理解数量关系的基础上,灵活运用所学知识,从不同起点,不同角度,多侧面地寻求多种解法,也能促进学生思维的灵活性。
通过训练,学生学会多向思维,就能开阔思路,使思维敏捷,达到知识融会贯通,举一反三的目的。
3 自我评估,比较鉴别,培养思维的准确性
少数学生对应用题中的数量关系,处于一知半解的程度,有时解答了却不知正确与否。为了杜绝此类现象发生,我要求学生在确定计算步骤,列出算式后,不要忙于计算结果,先要讲出算理,看是否合乎题意,是否正确地反映数量关系,检验自己的思维是否合理正确。
有的题虽然计算出结果,还应要求学生根据题意估算结果是否合理。例如:“车站有货45吨,用甲汽车10小时可运完,用乙汽车15小时可运完,两车同运,几小时可运完?”有的学生算式误为:45÷(45÷10+45÷15)=270(小时)。
我先不肯定结果是否正确,而是让学生估算结果是否符合题意。①同一批货物,用两辆车同时运比一辆车单独运所用时间一定要少,而270小时却大大超过一辆车运所用的时间;②甲10小时能运45吨,乙15小时能运出45吨,如果甲、乙各运270小时,所运货物总重量应大大超过45吨;③甲运45吨需10小时,每小时运4.5吨;乙运45吨需15小时,每小时运3吨,则甲乙一小时共运(3+4.5)吨,甲乙共运45吨,只需45÷7.5=6小时。
由于平时重视培养学生的评估能力,学生对各类题目的理解透彻,分析问题和解决问题的能力大大提高,思维的正确性明显增强。但仍有学生思维狭窄,这有待于在今后的教学中不断探索,总结出切实可行的经验、促使他们用成良好的思维品质。
1 认真审题,揭示联系,培养思维的流畅性
在应用题教学中,学生能否正确的解答应用题,首先是审题,我注意从读题入手,引导学生认真审题。具体做法是:①熟悉性的读,分清题中的情节、条件和问题。读完后,不看书想一想,用自己的话说一说题目中的意思;②批划性的读,即用自己喜欢的、不同的符号将题中表达情节和数量关系的词语划下来,帮助理解题意,疑难之处也应标出来;③推理性的读,以弄清条件与条件,问题与问题之间的联系,寻求解题的基本途径,明确解题思路的指向。
一题多问,也是培养学生思维流畅性的好形式。如给学生一组条件:“西村小学五年级有拉生50人,女生40人”。要求多方位地提出新颖的问题。同学们经过独立思考,小组议论,提出如下一些问题:①五年级共多少人?②男生它女生多多少人?③女生它男生少多少人?④男生是女生的几倍?⑤女生是男生的几分之几?⑥男、女生各占总数的几分之几?⑦女生是男生的几分之几?⑧男生它女生多百分之几?⑨女生它男生少百分之几?⑩男生和女生的人数它是多少?……使他们的思维多方面、多层次地扩散,为提出多种解题方法创造条件。
2 合理想象,多向探求,培养思维的灵活性
为了培养学生思维的灵活性,我注意引导学生根据不同条件,展开合理的想象、推理。例如:从“一本书80页,小红第一天看了全书的40%,第二天看了全书的30%”三个条件中,可以想象出什么结果。经过思考后学生提出:①从第一个条件和第二个条件可知小红第一天读书的页数;②从第一条件和第三个条件中可知小红第二天读的页数;③从第二个条件和第三个条件中可知:a.两天共看56页;b.还剩24页没看;c.第一天比第二天多看8页;d.第一天看的是第二天的1;④从以上三个条件可知:a.两天共看45页;b.还剩24页没看;c.第一天比第二天多看8页;d.两天看的页数的比是4:3,……通过训练,学生思维的灵活性得到了锻炼;解题思路它以前活跃,化难为易的本领也逐步具备了。
让学生掌握条件与条件、条件与问题,深刻理解数量关系的基础上,灵活运用所学知识,从不同起点,不同角度,多侧面地寻求多种解法,也能促进学生思维的灵活性。
通过训练,学生学会多向思维,就能开阔思路,使思维敏捷,达到知识融会贯通,举一反三的目的。
3 自我评估,比较鉴别,培养思维的准确性
少数学生对应用题中的数量关系,处于一知半解的程度,有时解答了却不知正确与否。为了杜绝此类现象发生,我要求学生在确定计算步骤,列出算式后,不要忙于计算结果,先要讲出算理,看是否合乎题意,是否正确地反映数量关系,检验自己的思维是否合理正确。
有的题虽然计算出结果,还应要求学生根据题意估算结果是否合理。例如:“车站有货45吨,用甲汽车10小时可运完,用乙汽车15小时可运完,两车同运,几小时可运完?”有的学生算式误为:45÷(45÷10+45÷15)=270(小时)。
我先不肯定结果是否正确,而是让学生估算结果是否符合题意。①同一批货物,用两辆车同时运比一辆车单独运所用时间一定要少,而270小时却大大超过一辆车运所用的时间;②甲10小时能运45吨,乙15小时能运出45吨,如果甲、乙各运270小时,所运货物总重量应大大超过45吨;③甲运45吨需10小时,每小时运4.5吨;乙运45吨需15小时,每小时运3吨,则甲乙一小时共运(3+4.5)吨,甲乙共运45吨,只需45÷7.5=6小时。
由于平时重视培养学生的评估能力,学生对各类题目的理解透彻,分析问题和解决问题的能力大大提高,思维的正确性明显增强。但仍有学生思维狭窄,这有待于在今后的教学中不断探索,总结出切实可行的经验、促使他们用成良好的思维品质。