论文部分内容阅读
【摘 要】 地震是一种目前难以准确预测的自然灾害,为避免它给人类带来大的灾难。作为工程技术设计人员在建筑结构的研究和工程设计中,应从整体宏观的观点出发,综合处理好建筑功能、技术、艺术、安全可靠性和经济合理等几方面内容,从而创造出更加安全、适用、经济美观的高层建筑。
【关键词】 建筑结构;设计;抗震性能;概念设计;抗震计算
地震是一种人类无法避免的自然灾害,而我国处于环太平洋地震带及欧亚地震带之间,历史上全国除个别省份外,都发生过里氏6级以上地震。地震造成的建筑物及各类工程设施的破坏、倒塌,给国家和人民的生命财产造成了无法统计的巨大损失。为了努力减轻地震造成的破坏,避免人员伤亡,减少经济损失,我国政府和相关部委陆续颁布了一系列防震减灾的法律、法规条文,并强制规定设防烈度为6度以上地区的建筑必须进行抗震设计。
一、建筑结构抗震性能分析
地震的危害巨大,建筑物的抗震性能显得尤为重要。在抗震研究中对结构抗震性能进行分析是一项重要内容,非线性时程分析法和非线性静力分析法是目前常用抗震分析方法。
针对结构非线性反应的非线性时程分析法(非线性动力反应分析),经历了从建立在层模型或单列梁柱模型上的方法到建立在截面多弹簧模型上的方法,再到建立在截面纤维滞回本构规律的纤维模型法,这使得模拟的准确程度不断提高。其基本思路是通过一系列数值方法来建立和求解动力方程,从而得到结构各个时刻的反应量。但对地震特点和结构特性的假设,使其结果存在不确定性,其主要价值是用来考察地震作用下普遍的而非特定的反应规律,以及对抗震设计后的结构进行校核分析,评估其抗震性能:非线性静力分析法(pushover)是近年来得到广泛应用的一种结构抗震能力评估的新方法。这种方法从本质上说是一种静力非线性计算方法,但它将反应谱引入了计算过程。它的基本思路是先以某种方法得到结构在地震作用下所对应的目标位移,然后对结构施加竖向荷载,并将表征地震作用的一组水平静力荷载以单调递增的形式作用到结构上,在达到目标位移时停止荷载递增,最后在荷载中止状态对结构进行抗震性能评估,判断是否可以保证结构在该地震作用下满足功能需求。
二、建筑结构设计中的抗震设计要点
1、选择有利的抗震场地
人们常常看到在具有不同工程地质条件的场地上,建筑物在地震中的破坏程度是明显不同的。于是人们自然就想到既然在不同场地条件下建筑物所受的破坏作用是不同的,那么,选择对抗震有利的场地和避开不利的场地进行建设,就能大大地减轻地震灾害。另一方面,由于建设用地受到地震以外的许多因素的限制,除了极不利和有严重危险性的场地以外,往往是不能排除其作为建设用场地的。这样就有必要按照场地、地基对建筑物所受地震破坏作用的强弱和特征进行分类,以便按照不同场地特点采取抗震措施。
2、选择合理平面与立面布置
在建筑结构的立体结构与设计平面中,则有以下几方面:(1)建筑的结构刚度以及它的抗震能力,在水平的地震作用下它是双向的,在结构的布置上,结构应该可以抵抗任何方向的地震。一般情况下,可以促使结构从平面的主轴方向,它具有足够的抗震力和刚度。(2)简单的结构性。所谓结构简单它是对结构在地震时所具有明确和直接传力方式,也只有在简单的结构,才可以把结构的计算模型以及位移内力进行分析,控制薄弱的部位出现,因此对抗震结构的性能估计也是比较可靠的。(3)整体性结构,在高层的建筑设计中楼盖的设计在整体结构中会起到十分重要的作用,结构中的楼盖是等同于一个水平的隔板不仅是传递惯性力到每个竖向的抗侧力子结构,并且对这些子结构可以协同承受一定的地震作用,当布置不均匀的竖向的抗侧力子发生水平变形时在整个的结构中,是要依靠楼盖的作用把抗侧力子结构来协同工作。
3、建筑结构体系的合理选择
建筑结构体系的合理选择是结构设计应考虑的一个重要问题,结构方案的选取是否合理,对安全性和经济性起决定的作用。具体而言,应注重以下几方面的设计:第一,结构体系应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。抗震设计的一个重要原则是结构应具有必要的赘余度和内力重分配的功能,即使地震中部分构件退出工作,其余构件仍能将竖向荷载承担下来,避免整体结构失效或失稳。第二,结构体系应具有明确的计算简图和合理的地震作用传递途径。在这过程中,竖向构件的布置,应尽量使竖向构件在垂直重力荷载作用下的压应力水平按近均匀;楼屋盖梁系的布置,应尽量使垂直重力荷载以最短的路径传递到竖向构件墙、柱上去;转换结构的布置,应尽量做到使上部结构竖向构件传来的垂直重力荷载通过转换层一次至多二次转换。与此同时,整体抗侧力结构体系也必须明确,抗侧力结构一般由框架、剪力墙、简体、支撑等组成,它们宜尽量贯通连续,若它们沿竖向要有变化,则变化要缓慢均匀。第三,结构体系应具备必要的承载能力,良好的变形能力和消耗地震能量的能力。钢筋混凝土结构具有良好的塑性内力重分布能力,能较充分地发挥吸收和耗散地震能量的作用。第四,结构体系应具有合理的刚度和强度。宜具有合理的刚度和强度分布,避免因局部削弱或突变形成薄弱部位,产生过大的应力集中或塑性变形集中;框架结构设计应使节点基本不破坏,底层柱底的塑性铰宜晚形成,应当使梁、柱端的塑性铰出现得尽可能分散;对于可能出现的薄弱部位,应采取措施提高抗震能力。
4、保证结构的延性抗震能力
结构主要靠延性来抵抗较大地震作用下的非弹性变形,因此,地震作用下,结构的延性与结构的强度具有同等重要的意义。为了使钢筋混凝土结构在地震引起的动力反应过程中表现出必要的延性,就必须使塑性变形更多地集中在比较容易保证良好延性性能或者具有一定延性能力的构件上。具体思路有三步:第一步是选择一个可接受的塑性变形机构。现在普遍使用“梁柱铰机构”即是通常所说的“强柱弱梁”。为了实现能力设计方法中的强柱弱梁机构,我们通常的做法是对柱截面的组合弯矩乘以增大系数;也可以对由梁端实际配筋反算出梁端可抵抗弯矩,即实配弯矩乘以增大系数的方法来实现,并用增大后的弯矩值进行柱端控制截面的承载力设计。第二步是要通过人为增大各类构件的抗剪能力,使其不致在强烈地震作用下,在结构延性未发挥出来之前出现非延性的剪切破坏,这即是我们通常所说的强剪弱弯。具体措施也有两类:一类是直接对一跨梁两端截面的顺时针或反时针方向的组合弯矩值乘以增大系数,再与梁上作用的竖向重力荷载代表值一起从平衡关系中求得梁端剪力;另一类是沿顺时针或反时针方向求得一跨梁两端截面按实际配筋能够抵抗的弯矩,对其乘以增大系数,再与梁上作用的竖向重力荷載代表值一起从平衡关系中求得梁端剪力。第三步是通过相应的构造措施,保证可能出现塑性铰的部位具有所需的塑性转动能力和塑性耗能能力。
总而言之,随着建筑高度不断增加,建筑的结构设计也成为结构工程师设计工作的主要重点和难点。建筑物的抗震设计是衡量建筑结构设计是否符合要求的重要指标。因此如何准确、合理的运用不同的抗震设计方法,是非常重要的,对于不同的建筑、不同的情况应区别对待,从而寻求最合理的抗震设计。
参考文献:
[1]倪广林.对建筑结构抗震设计的若干思考[J].山西建筑,2010,(27).
[2]方小丹,魏琏.关于建筑结构抗震设计若干问题的讨论[J].建筑结构学报,2011,(12).
【关键词】 建筑结构;设计;抗震性能;概念设计;抗震计算
地震是一种人类无法避免的自然灾害,而我国处于环太平洋地震带及欧亚地震带之间,历史上全国除个别省份外,都发生过里氏6级以上地震。地震造成的建筑物及各类工程设施的破坏、倒塌,给国家和人民的生命财产造成了无法统计的巨大损失。为了努力减轻地震造成的破坏,避免人员伤亡,减少经济损失,我国政府和相关部委陆续颁布了一系列防震减灾的法律、法规条文,并强制规定设防烈度为6度以上地区的建筑必须进行抗震设计。
一、建筑结构抗震性能分析
地震的危害巨大,建筑物的抗震性能显得尤为重要。在抗震研究中对结构抗震性能进行分析是一项重要内容,非线性时程分析法和非线性静力分析法是目前常用抗震分析方法。
针对结构非线性反应的非线性时程分析法(非线性动力反应分析),经历了从建立在层模型或单列梁柱模型上的方法到建立在截面多弹簧模型上的方法,再到建立在截面纤维滞回本构规律的纤维模型法,这使得模拟的准确程度不断提高。其基本思路是通过一系列数值方法来建立和求解动力方程,从而得到结构各个时刻的反应量。但对地震特点和结构特性的假设,使其结果存在不确定性,其主要价值是用来考察地震作用下普遍的而非特定的反应规律,以及对抗震设计后的结构进行校核分析,评估其抗震性能:非线性静力分析法(pushover)是近年来得到广泛应用的一种结构抗震能力评估的新方法。这种方法从本质上说是一种静力非线性计算方法,但它将反应谱引入了计算过程。它的基本思路是先以某种方法得到结构在地震作用下所对应的目标位移,然后对结构施加竖向荷载,并将表征地震作用的一组水平静力荷载以单调递增的形式作用到结构上,在达到目标位移时停止荷载递增,最后在荷载中止状态对结构进行抗震性能评估,判断是否可以保证结构在该地震作用下满足功能需求。
二、建筑结构设计中的抗震设计要点
1、选择有利的抗震场地
人们常常看到在具有不同工程地质条件的场地上,建筑物在地震中的破坏程度是明显不同的。于是人们自然就想到既然在不同场地条件下建筑物所受的破坏作用是不同的,那么,选择对抗震有利的场地和避开不利的场地进行建设,就能大大地减轻地震灾害。另一方面,由于建设用地受到地震以外的许多因素的限制,除了极不利和有严重危险性的场地以外,往往是不能排除其作为建设用场地的。这样就有必要按照场地、地基对建筑物所受地震破坏作用的强弱和特征进行分类,以便按照不同场地特点采取抗震措施。
2、选择合理平面与立面布置
在建筑结构的立体结构与设计平面中,则有以下几方面:(1)建筑的结构刚度以及它的抗震能力,在水平的地震作用下它是双向的,在结构的布置上,结构应该可以抵抗任何方向的地震。一般情况下,可以促使结构从平面的主轴方向,它具有足够的抗震力和刚度。(2)简单的结构性。所谓结构简单它是对结构在地震时所具有明确和直接传力方式,也只有在简单的结构,才可以把结构的计算模型以及位移内力进行分析,控制薄弱的部位出现,因此对抗震结构的性能估计也是比较可靠的。(3)整体性结构,在高层的建筑设计中楼盖的设计在整体结构中会起到十分重要的作用,结构中的楼盖是等同于一个水平的隔板不仅是传递惯性力到每个竖向的抗侧力子结构,并且对这些子结构可以协同承受一定的地震作用,当布置不均匀的竖向的抗侧力子发生水平变形时在整个的结构中,是要依靠楼盖的作用把抗侧力子结构来协同工作。
3、建筑结构体系的合理选择
建筑结构体系的合理选择是结构设计应考虑的一个重要问题,结构方案的选取是否合理,对安全性和经济性起决定的作用。具体而言,应注重以下几方面的设计:第一,结构体系应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。抗震设计的一个重要原则是结构应具有必要的赘余度和内力重分配的功能,即使地震中部分构件退出工作,其余构件仍能将竖向荷载承担下来,避免整体结构失效或失稳。第二,结构体系应具有明确的计算简图和合理的地震作用传递途径。在这过程中,竖向构件的布置,应尽量使竖向构件在垂直重力荷载作用下的压应力水平按近均匀;楼屋盖梁系的布置,应尽量使垂直重力荷载以最短的路径传递到竖向构件墙、柱上去;转换结构的布置,应尽量做到使上部结构竖向构件传来的垂直重力荷载通过转换层一次至多二次转换。与此同时,整体抗侧力结构体系也必须明确,抗侧力结构一般由框架、剪力墙、简体、支撑等组成,它们宜尽量贯通连续,若它们沿竖向要有变化,则变化要缓慢均匀。第三,结构体系应具备必要的承载能力,良好的变形能力和消耗地震能量的能力。钢筋混凝土结构具有良好的塑性内力重分布能力,能较充分地发挥吸收和耗散地震能量的作用。第四,结构体系应具有合理的刚度和强度。宜具有合理的刚度和强度分布,避免因局部削弱或突变形成薄弱部位,产生过大的应力集中或塑性变形集中;框架结构设计应使节点基本不破坏,底层柱底的塑性铰宜晚形成,应当使梁、柱端的塑性铰出现得尽可能分散;对于可能出现的薄弱部位,应采取措施提高抗震能力。
4、保证结构的延性抗震能力
结构主要靠延性来抵抗较大地震作用下的非弹性变形,因此,地震作用下,结构的延性与结构的强度具有同等重要的意义。为了使钢筋混凝土结构在地震引起的动力反应过程中表现出必要的延性,就必须使塑性变形更多地集中在比较容易保证良好延性性能或者具有一定延性能力的构件上。具体思路有三步:第一步是选择一个可接受的塑性变形机构。现在普遍使用“梁柱铰机构”即是通常所说的“强柱弱梁”。为了实现能力设计方法中的强柱弱梁机构,我们通常的做法是对柱截面的组合弯矩乘以增大系数;也可以对由梁端实际配筋反算出梁端可抵抗弯矩,即实配弯矩乘以增大系数的方法来实现,并用增大后的弯矩值进行柱端控制截面的承载力设计。第二步是要通过人为增大各类构件的抗剪能力,使其不致在强烈地震作用下,在结构延性未发挥出来之前出现非延性的剪切破坏,这即是我们通常所说的强剪弱弯。具体措施也有两类:一类是直接对一跨梁两端截面的顺时针或反时针方向的组合弯矩值乘以增大系数,再与梁上作用的竖向重力荷载代表值一起从平衡关系中求得梁端剪力;另一类是沿顺时针或反时针方向求得一跨梁两端截面按实际配筋能够抵抗的弯矩,对其乘以增大系数,再与梁上作用的竖向重力荷載代表值一起从平衡关系中求得梁端剪力。第三步是通过相应的构造措施,保证可能出现塑性铰的部位具有所需的塑性转动能力和塑性耗能能力。
总而言之,随着建筑高度不断增加,建筑的结构设计也成为结构工程师设计工作的主要重点和难点。建筑物的抗震设计是衡量建筑结构设计是否符合要求的重要指标。因此如何准确、合理的运用不同的抗震设计方法,是非常重要的,对于不同的建筑、不同的情况应区别对待,从而寻求最合理的抗震设计。
参考文献:
[1]倪广林.对建筑结构抗震设计的若干思考[J].山西建筑,2010,(27).
[2]方小丹,魏琏.关于建筑结构抗震设计若干问题的讨论[J].建筑结构学报,2011,(12).