论文部分内容阅读
为了改善Lagrange插播算子的一致收敛性并提高算子最佳收敛阶,我们以一类Jacobi多项式的零点作为插值结点,通过对插值结点处函数值的线性组合,构造了一类线性插值算子,给出了该类算子的最佳收敛阶定理; 进而研究了此类算子的导数逼近问题,利用对算子进行分项估计的方法,不仅证明了该算子的导数一致收敛于具有连续导数的函数,而且给出了算子的一阶导数逼近函数导数的最佳收敛阶.