论文部分内容阅读
针对某一类别商品图像的精细分类,研究并实现了深度学习中的卷积神经网络方法。所设计的卷积神经网络由2个卷积层、2个亚采样层及1个完全连接层组成,特征平面的神经元只对其感受野的重叠区域做出反应,由反向传播算法调整网络参数最终完成学习任务。通过鞋类图像的精细分类实验表明,该方法平均分类正确率可达91.5%。