论文部分内容阅读
《2011年版数学课程标准》指出:“空间观念是一种自觉地感受空间图形、运用空间图形的意识和能力”。其主要表现在:实物的形状与几何图形之间的想象;复杂图形的分解;描述实物或几何图形的运动、变化和位置的关系;运用图形描述问题、利用图形直观来进行思考等。在小学数学教学中,教师不仅要重视学生“合情推理”的逻辑思维能力,更应该重视空间观念的培养。下面就如何在教学中培养学生空间观念略谈几点自己的做法。
一、落实从“建立表象”到“再造想象”“创造想象”的过渡
1、运用感性材料,建立表象
小学教材的几何知识的安排是:线→面→体,即一维空间→二维空间→三维空间;从图形来说是简单单一→复杂组合;从计算来说是长度→面积→体积。教学中应注意以下两个方面:第一、重视启蒙阶段对几何图形的观察。如一年级出现了三角形、正方形、立方形以及圆等图形和直观教具,出现这些图形不仅仅只是为了认数,同时也是为了培养学生初步空间观念。一年级有这样一道习题:要求学生在下图中找三角形、圆形、正方形的个数,这个集合图里的图形,排列杂乱,大小不一,既有标准图形,又有变式图形。这时要好好指导学生观察,然后让学生分类找出,从而使学生初步建立起三角形、正方形、圆形等的表象。
2、创造条件,形成再造想象
表象的重新组合、成为新的表象,就是想象。如果这种想象是根据别人的语言文字描述或图形、模型想出来的,这种想象就是再造想象。再造想象在培养学生初步空间概念中具有重要意义。第一、通过实际操作,促进学生想象。如长方体、正方体的表面积和体积两个概念,学生往往容易混淆,我们除了把长方体、正方体的六个面展开,说明这六个面的总面积就是表面积外,还应把长方体、正方体摆在讲桌上,看所占空间的大小,说明这就是体积。然后让学生自己动手做一个长方体和正方体的纸盒,看看要多少硬纸盒,这两种纸盒各有多大。第二、渗透几何思想,丰富学生想象。如讲完梯形之后,我们对四边形先进行归类复习,可运用让学生边想边填图的方式,从而渗透正方形集合是长方形集合的子集合,长方形集合又是平行四边形的子集合,平行四边形集合和梯形集合又是四边形集合的子集合的集合思想。
3、积极引导,培养创造想象
创造想象是新表象的创造,小学生学习的初步的几何知识,也需要创造想象。教学中,一定要积极引导,培养学生的创造想象力,以促进初步空间观念的迅速形成。首先要培养学生具有独立思想的自觉性。如:在学完“梯形面积”后,要学生计算做一个加料斗要用多少铁板。学生的立体图形知识很贫乏,虽有一图,但看不懂,也想象不出这是一个什么样的形状,这时,教师应拿出一个加料斗模型让学生观察,然后让学生用硬纸做一个加料斗,再让学生独自想一想。计算做这个加料斗要多少材料的关键是什么?学生通过看、做、想,逐渐懂得它是由四块相等的梯形组成的。因此。求出四个相等梯形的面积,就是整个加料斗所需的材料了。其次要鼓励学生敢于进行捏造性想象。如圆面积求法,教材上采用了分割成16块相等的扇面,拼成近似长方形,推导出“圆面积”这一公式。如果把每一个扇形不断地分割下去,弧越来越短,会变成什么形状呢?让学生大胆想象,学生就会提出把圆分成近似三角形来推导圆面积,这个推导方法就是一种“创造性”的思想过程。
二、利用几何图形变式培养学生空间观念
1、亲自操作,感悟位置关系
让学生亲自动手、实验、操作,使学生经历、体验图形的变换,从中感悟图形的变化前后几何元素(点、线、面、体)的相互位置关系,这有利于培养学生直觉思维的习惯、发展空间观念。
2、充分想象,理解物图转化
新课标指出:“能由实物的形状想象出几何图形,由几何图形想象出实物形状”.通过观察图形,分析图中几何元素的位置关系,找寻实物和几何之间的内在的联系,凭借直觉思维,在想象实物和几何体之间的关系中寻得答案。在探索平面图形与空间几何体的相互转换的活动中,可建立空间观念,发展几何直觉。
3、动手折叠,感受图形演变
“折叠”是一类重要的几何题型,在近几年的中考题中缩短常常出现.主要考查学生识图、想图、画图等空间观念及空间图形平面化,非标准图形标准化的变形处理能力.解决这类问题时,需认真审图,充分挖掘折叠前、后平面图形与空间的位置关系中的“变”与“不变”,探寻解决问题的突破口。
4、分解图形,掌握处理能力
将复杂的图形分解为基本的、简单的图形,恰当地对图形进行分割、组合、变形的处理,易寻觅图中基本元素及相互位置关系,有利于问题的解决。这是考察学生几何直观、图形处理能力的重要内容.因此在图形变式的教学中,应有意识的培养学生识图、看图、变图、及图形的分解组合的能力。通过这样的训练,使学生经历和体验图形的变化过程,发展几何直觉,有利于他们今后学习立体几何。
三、教学时应注意的几个问题
教师的“教”,应当是为了学生更好的学习。教学中,正确处理教师的主导与学生的主体关系,才能提高课堂教学效率,取得更好的教学效果。
1、直观演示的正确性
在几何教学中,直观演示是很重要的,它能唤起学生头脑中已有的表象,使之组合、再造,形成新的表象,为概念的得出起到积极的作用。如讲“直线”,直线的特点一是“直”,二是无限的,三是无粗细的。我们拿细线来演示时,除了演示“直”外,还要突出“无限延伸”;黑板上画图时,也应告诉学生,黑板上只是画了这条直线的一部分,它的两边可以无限延伸,这样,才能使画图、演示、显示概念的内容一致起来,建立起清晰的表象。
2、语言叙述的准确性
在教学中,要力求语言表达准确,不能模棱两可。如用纸剪一个圆,还有像球的投影面等,它实际上是一个圆面,与几何中的“圆”是有区别的。如讲三角形分类,当学生明确了三种三角形(按角分类),还可告诉学生:任何一个三角形都有两个角是锐角,第三个决定分类。第三个是锐角的,就是锐角三角形,如果第三个角是直角的就是直角三角形等等。这样可以避免学生把“三个角是锐角的三角形就叫锐角三角形”类推到“三个角是钝角的三角形叫钝角三角形”,发生错误。
3、培养思维的灵活性
学生学习几何知识时,对获得的感性材料进行分析、比较、综合和抽象、概括,才能理解和掌握几何图形的概念和特征.通过判断、推理等思维的过程,才能更好地解决问题。在教学中还应注意思维的灵活性,以便更敏捷地解决问题。 例如,对于平面几何图形的特征和面积计算方法,开始只要求学生掌握每一种平面几何图形特征和面积计算方法,然后要求学生理解各种平面几何图形特征之间的相互关系、面积计算方法之间的联系,注意揭示图形概念与计算之间的辨证关系、联系和区别。通过变化平面图形,让图形与公式同步变化,使学生的思维更加灵活。
一、落实从“建立表象”到“再造想象”“创造想象”的过渡
1、运用感性材料,建立表象
小学教材的几何知识的安排是:线→面→体,即一维空间→二维空间→三维空间;从图形来说是简单单一→复杂组合;从计算来说是长度→面积→体积。教学中应注意以下两个方面:第一、重视启蒙阶段对几何图形的观察。如一年级出现了三角形、正方形、立方形以及圆等图形和直观教具,出现这些图形不仅仅只是为了认数,同时也是为了培养学生初步空间观念。一年级有这样一道习题:要求学生在下图中找三角形、圆形、正方形的个数,这个集合图里的图形,排列杂乱,大小不一,既有标准图形,又有变式图形。这时要好好指导学生观察,然后让学生分类找出,从而使学生初步建立起三角形、正方形、圆形等的表象。
2、创造条件,形成再造想象
表象的重新组合、成为新的表象,就是想象。如果这种想象是根据别人的语言文字描述或图形、模型想出来的,这种想象就是再造想象。再造想象在培养学生初步空间概念中具有重要意义。第一、通过实际操作,促进学生想象。如长方体、正方体的表面积和体积两个概念,学生往往容易混淆,我们除了把长方体、正方体的六个面展开,说明这六个面的总面积就是表面积外,还应把长方体、正方体摆在讲桌上,看所占空间的大小,说明这就是体积。然后让学生自己动手做一个长方体和正方体的纸盒,看看要多少硬纸盒,这两种纸盒各有多大。第二、渗透几何思想,丰富学生想象。如讲完梯形之后,我们对四边形先进行归类复习,可运用让学生边想边填图的方式,从而渗透正方形集合是长方形集合的子集合,长方形集合又是平行四边形的子集合,平行四边形集合和梯形集合又是四边形集合的子集合的集合思想。
3、积极引导,培养创造想象
创造想象是新表象的创造,小学生学习的初步的几何知识,也需要创造想象。教学中,一定要积极引导,培养学生的创造想象力,以促进初步空间观念的迅速形成。首先要培养学生具有独立思想的自觉性。如:在学完“梯形面积”后,要学生计算做一个加料斗要用多少铁板。学生的立体图形知识很贫乏,虽有一图,但看不懂,也想象不出这是一个什么样的形状,这时,教师应拿出一个加料斗模型让学生观察,然后让学生用硬纸做一个加料斗,再让学生独自想一想。计算做这个加料斗要多少材料的关键是什么?学生通过看、做、想,逐渐懂得它是由四块相等的梯形组成的。因此。求出四个相等梯形的面积,就是整个加料斗所需的材料了。其次要鼓励学生敢于进行捏造性想象。如圆面积求法,教材上采用了分割成16块相等的扇面,拼成近似长方形,推导出“圆面积”这一公式。如果把每一个扇形不断地分割下去,弧越来越短,会变成什么形状呢?让学生大胆想象,学生就会提出把圆分成近似三角形来推导圆面积,这个推导方法就是一种“创造性”的思想过程。
二、利用几何图形变式培养学生空间观念
1、亲自操作,感悟位置关系
让学生亲自动手、实验、操作,使学生经历、体验图形的变换,从中感悟图形的变化前后几何元素(点、线、面、体)的相互位置关系,这有利于培养学生直觉思维的习惯、发展空间观念。
2、充分想象,理解物图转化
新课标指出:“能由实物的形状想象出几何图形,由几何图形想象出实物形状”.通过观察图形,分析图中几何元素的位置关系,找寻实物和几何之间的内在的联系,凭借直觉思维,在想象实物和几何体之间的关系中寻得答案。在探索平面图形与空间几何体的相互转换的活动中,可建立空间观念,发展几何直觉。
3、动手折叠,感受图形演变
“折叠”是一类重要的几何题型,在近几年的中考题中缩短常常出现.主要考查学生识图、想图、画图等空间观念及空间图形平面化,非标准图形标准化的变形处理能力.解决这类问题时,需认真审图,充分挖掘折叠前、后平面图形与空间的位置关系中的“变”与“不变”,探寻解决问题的突破口。
4、分解图形,掌握处理能力
将复杂的图形分解为基本的、简单的图形,恰当地对图形进行分割、组合、变形的处理,易寻觅图中基本元素及相互位置关系,有利于问题的解决。这是考察学生几何直观、图形处理能力的重要内容.因此在图形变式的教学中,应有意识的培养学生识图、看图、变图、及图形的分解组合的能力。通过这样的训练,使学生经历和体验图形的变化过程,发展几何直觉,有利于他们今后学习立体几何。
三、教学时应注意的几个问题
教师的“教”,应当是为了学生更好的学习。教学中,正确处理教师的主导与学生的主体关系,才能提高课堂教学效率,取得更好的教学效果。
1、直观演示的正确性
在几何教学中,直观演示是很重要的,它能唤起学生头脑中已有的表象,使之组合、再造,形成新的表象,为概念的得出起到积极的作用。如讲“直线”,直线的特点一是“直”,二是无限的,三是无粗细的。我们拿细线来演示时,除了演示“直”外,还要突出“无限延伸”;黑板上画图时,也应告诉学生,黑板上只是画了这条直线的一部分,它的两边可以无限延伸,这样,才能使画图、演示、显示概念的内容一致起来,建立起清晰的表象。
2、语言叙述的准确性
在教学中,要力求语言表达准确,不能模棱两可。如用纸剪一个圆,还有像球的投影面等,它实际上是一个圆面,与几何中的“圆”是有区别的。如讲三角形分类,当学生明确了三种三角形(按角分类),还可告诉学生:任何一个三角形都有两个角是锐角,第三个决定分类。第三个是锐角的,就是锐角三角形,如果第三个角是直角的就是直角三角形等等。这样可以避免学生把“三个角是锐角的三角形就叫锐角三角形”类推到“三个角是钝角的三角形叫钝角三角形”,发生错误。
3、培养思维的灵活性
学生学习几何知识时,对获得的感性材料进行分析、比较、综合和抽象、概括,才能理解和掌握几何图形的概念和特征.通过判断、推理等思维的过程,才能更好地解决问题。在教学中还应注意思维的灵活性,以便更敏捷地解决问题。 例如,对于平面几何图形的特征和面积计算方法,开始只要求学生掌握每一种平面几何图形特征和面积计算方法,然后要求学生理解各种平面几何图形特征之间的相互关系、面积计算方法之间的联系,注意揭示图形概念与计算之间的辨证关系、联系和区别。通过变化平面图形,让图形与公式同步变化,使学生的思维更加灵活。