论文部分内容阅读
为深入认识汽液界面现象 ,解释汽液界面的独特性质 ,采用分子动力学模拟方法从分子水平上研究了 L ennard-Jones流体汽液界面。模拟结果表明 ,汽液界面实际上是一个随时间涨落的起伏不平的曲面 ;汽液过渡区就是该曲面的涨落区域 ;汽液相变是一个突变的过程 ;汽液界面体系内密度、压力张量及温度等热力学量连续变化只是统计的结果。并在此认识基础上 ,从汽液分子相互转化的微观行为解释了汽液界面的温度分布中的尖峰和低谷出现的原因。在分子的汽液相变过程中 ,从液相向气相的转化发生在汽液界面的波峰处的几率最大 ,而从气相向液相的转化发生在汽液界面的波谷处的几率最大
In order to understand the vapor-liquid interface phenomenon and explain the unique properties of the vapor-liquid interface, molecular dynamics simulations were used to study L ennard-Jones fluid vapor-liquid interface at the molecular level. The simulation results show that the vapor-liquid interface is actually an undulating surface that fluctuates with time. The vapor-liquid transition zone is the fluctuation area of the surface. The vapor-liquid phase change is a sudden process. The density, The continuous changes in the thermodynamic quantities such as pressure tensor and temperature are only the result of statistics. On the basis of this understanding, the causes of spikes and troughs in the temperature distribution of the vapor-liquid interface are explained from the microscopic behavior of vapor-liquid molecular interconversion. In the vapor-liquid phase transition of molecules, the transition from the liquid phase to the gas phase takes place at the peak of the vapor-liquid interface with the highest probability and the transition from the gas phase to the liquid phase takes place at the trough of the vapor-liquid interface