论文部分内容阅读
摘要: 为了把非线性动力学理论应用于超灵敏质量传感技术,应用积分方程法研究了由两个弹性耦合的纳米尺度Duffing振子构成的非线性受迫振动系统的动力学特性。该方法首先求得控制方程的线性部分对应的级数形式的格林函数,然后把控制方程转化为积分方程,再把积分方程化为代数方程组,最后数值求解该方程组,得到问题的近似解。由数值实验发现,当系统的参数取一组特定数值时,此系统可发生模态局部化现象。而当系统的参数取另一组特定数值时,一个振子的质量的微小变化可引起另一个振子的周期响应发生剧烈变化。关键词: 非线性振动; Duffing振子; 质量传感; 积分方程法
中图分类号:O322文献标识码: A文章编号: 10044523(2014)04053306
引言
过去的10年见证了纳米技术的快速发展,这使得各种基于纳米尺度的机械谐振器功能元件,诸如纳米尺度的驱动装置、传感元件和检测元件不断涌现[1~3]。而纳米尺度的机械谐振器的动力特性直接影响其性能[4~6],所以为了设计新颖和高性能的功能元件,研究纳米尺度的机械谐振器的动力学特性具有重要的意义。最近Spletzer等发现应用耦合的微悬臂梁系统中出现的模态局部化现象可明显地改进质量传感器的灵敏度[7]。实际上,纳米尺度弹性耦合的固支梁系统的超高谐振频率已经引起了研究者关注[8~13]。但如何在质量传感元件中应用弹性耦合纳米尺度固支梁的非线性特性仍有待进一步研究[14,15]。本文试图应用积分方程法研究可用于超灵敏质量探测的两个弹性耦合纳米尺度的Duffing振子的非线性特性。
本文应用积分方程法研究了两弹性耦合纳米尺度的Duffing振子的非线性特性及其在质量传感技术中的应用。通过数值实验,发现了两个可用于质量传感技术的非线性现象,一是模态局部化现象;另一个是当在梁1上放置微小附加质量时,梁2的周期响应会发生剧烈变化。
参考文献:
[1]Craighead H G. Nanoelectromechanical systems[J]. Science, 2000,290(5496):1 532—1 535.
[2]Eom K, Park H S, Yoon D S, et al. Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles[J]. Physics Reports, 2011,503(4/5):115—163.
[3]Ekinci K L. Electromechanical transducers at the nanoscale: actuation and sensing of motion in nanoelectromechanical systems (NEMS)[J]. Small, 2005,1(8/9):786—797.
[4]Braun T, Barwich V, Ghatkesar M K, et al. Micromechanical mass sensors for biomolecular detection in a physiological environment[J]. Phys. Rev. E, 2005,72(3):031907—9.
[5]Ilic B, Craighead H G, Krylov S, et al. Attogram defection using nanoelectromechanical oscillators[J]. J. Appl. Phys., 2004,95(7):3 694—3 703.
[6]Ekinci K L, Huang X M H, Roukes M L. Ultrasensitive nanoelectromechanical mass detection[J]. Appl. Phys. Lett., 2004,84(22):4 469—4 471.
[7]Spletzer M, Raman A, Wu A Q, et al. Ultrasensitive mass sensing using mode localization in coupled microcantilevers[J]. Appl. Phys. Lett., 2006,88(25):254102—3.
[8]Husain A, Hone J, Postma H W C, et al. Nanowirebased veryhighfrequency electromechanical resonator[J]. Appl. Phys. Lett., 2003,83(6):1 240—1 242.
[9]Peng H B, Chang C W, Aloni S, et al. Ultrahigh frequency nanotube resonators[J]. Phys. Rev. Lett., 2006,97(8):087203—4.
[10]Masmanidis S C, Karabalin R B, Vlaminck I D, et al. Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation[J]. Science, 2007,317(5839):780—783.
[11]Feng X L, He R, Yang P, et al. Very high frequency silicon nanowire electromechanics resonators[J]. Nano Lett., 2007,7(7):1 953—1 959. [12]Witkamp B, Poot M, van der Zant H S J. Bendingmode vibration of a suspended nanotube resonator[J]. Nano Lett., 2006,6(12):2 904—2 908.
[13]Sazonova V, Yaish Y, Ustunel H, et al. A tunable Carbon nanotube electromechanical oscillator[J]. Nature, 2004,431(7006):284—287.
[14]Postma H W C, Kozinsky I, Husain A, et al. Dynamic range of nanotube and nanowirebased electromechanical systems[J]. Appl. Phys. Lett., 2005,86(22):223105—3.
[15]Karabalin R B, Cross M C, Roukes M L. Nonlinear dynamics and chaos in two coupled nanomechanical resonators[J]. Phys. Rev. B, 2009,79(16):165309—5.
[16]Xu M T, Li J F, Cheng D L. Nonlinear vibration by a new method[J]. Journal of Sound and Vibration, 1998,215(3):475—487.
[17]Cheung Y K, Lau S L. Incremental timespace finite strip method for nonlinear structural vibrations[J]. Earthquake Engineering and Structural Dynamics, 1982,10(2):239—253.
Nonlinear dynamic characteristics of two elastically coupled
Duffing nanomechanical resonators
XU Mingtian
(School of Civil Engineering, Shandong University, Jinan 250061, China)
Abstract: In order to apply the nonlinear dynamic theory to the ultrasensitive mass sensing technology, an integral equation approach is employed to investigate the nonlinear dynamic characteristics of a forced nonlinear system consisting of two elastically coupled nanomechanical resonators. Firstly, the Green function of the linear part of the governing equation is expressed into the series form. Then the governing equation is transformed into the integral equation. The integral equation is further reduced into the algebraic equation system which can be solved numerically. It is found that when the system parameters take a group of specific values the mode localization phenomenon can occur. When the system parameters take another group of specific values, the tiny change of the mass of one resonator can cause a drastic change of the periodic response of the other resonator.Key words: nonlinear vibration; Duffing resonator; mass sensing; integral equation approach作者简介:许明田(1965—),男,教授。电话:(0531)88395809;Email:[email protected]
通讯作者:何勇(1979—),男,讲师。电话:(0571)87951817608;Email: [email protected]
基金项目:浙江大学国防预研基金资助项目; 浙江省“钱江人才”计划资助项目(QJD0702006)
中图分类号:O322文献标识码: A文章编号: 10044523(2014)04053306
引言
过去的10年见证了纳米技术的快速发展,这使得各种基于纳米尺度的机械谐振器功能元件,诸如纳米尺度的驱动装置、传感元件和检测元件不断涌现[1~3]。而纳米尺度的机械谐振器的动力特性直接影响其性能[4~6],所以为了设计新颖和高性能的功能元件,研究纳米尺度的机械谐振器的动力学特性具有重要的意义。最近Spletzer等发现应用耦合的微悬臂梁系统中出现的模态局部化现象可明显地改进质量传感器的灵敏度[7]。实际上,纳米尺度弹性耦合的固支梁系统的超高谐振频率已经引起了研究者关注[8~13]。但如何在质量传感元件中应用弹性耦合纳米尺度固支梁的非线性特性仍有待进一步研究[14,15]。本文试图应用积分方程法研究可用于超灵敏质量探测的两个弹性耦合纳米尺度的Duffing振子的非线性特性。
本文应用积分方程法研究了两弹性耦合纳米尺度的Duffing振子的非线性特性及其在质量传感技术中的应用。通过数值实验,发现了两个可用于质量传感技术的非线性现象,一是模态局部化现象;另一个是当在梁1上放置微小附加质量时,梁2的周期响应会发生剧烈变化。
参考文献:
[1]Craighead H G. Nanoelectromechanical systems[J]. Science, 2000,290(5496):1 532—1 535.
[2]Eom K, Park H S, Yoon D S, et al. Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles[J]. Physics Reports, 2011,503(4/5):115—163.
[3]Ekinci K L. Electromechanical transducers at the nanoscale: actuation and sensing of motion in nanoelectromechanical systems (NEMS)[J]. Small, 2005,1(8/9):786—797.
[4]Braun T, Barwich V, Ghatkesar M K, et al. Micromechanical mass sensors for biomolecular detection in a physiological environment[J]. Phys. Rev. E, 2005,72(3):031907—9.
[5]Ilic B, Craighead H G, Krylov S, et al. Attogram defection using nanoelectromechanical oscillators[J]. J. Appl. Phys., 2004,95(7):3 694—3 703.
[6]Ekinci K L, Huang X M H, Roukes M L. Ultrasensitive nanoelectromechanical mass detection[J]. Appl. Phys. Lett., 2004,84(22):4 469—4 471.
[7]Spletzer M, Raman A, Wu A Q, et al. Ultrasensitive mass sensing using mode localization in coupled microcantilevers[J]. Appl. Phys. Lett., 2006,88(25):254102—3.
[8]Husain A, Hone J, Postma H W C, et al. Nanowirebased veryhighfrequency electromechanical resonator[J]. Appl. Phys. Lett., 2003,83(6):1 240—1 242.
[9]Peng H B, Chang C W, Aloni S, et al. Ultrahigh frequency nanotube resonators[J]. Phys. Rev. Lett., 2006,97(8):087203—4.
[10]Masmanidis S C, Karabalin R B, Vlaminck I D, et al. Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation[J]. Science, 2007,317(5839):780—783.
[11]Feng X L, He R, Yang P, et al. Very high frequency silicon nanowire electromechanics resonators[J]. Nano Lett., 2007,7(7):1 953—1 959. [12]Witkamp B, Poot M, van der Zant H S J. Bendingmode vibration of a suspended nanotube resonator[J]. Nano Lett., 2006,6(12):2 904—2 908.
[13]Sazonova V, Yaish Y, Ustunel H, et al. A tunable Carbon nanotube electromechanical oscillator[J]. Nature, 2004,431(7006):284—287.
[14]Postma H W C, Kozinsky I, Husain A, et al. Dynamic range of nanotube and nanowirebased electromechanical systems[J]. Appl. Phys. Lett., 2005,86(22):223105—3.
[15]Karabalin R B, Cross M C, Roukes M L. Nonlinear dynamics and chaos in two coupled nanomechanical resonators[J]. Phys. Rev. B, 2009,79(16):165309—5.
[16]Xu M T, Li J F, Cheng D L. Nonlinear vibration by a new method[J]. Journal of Sound and Vibration, 1998,215(3):475—487.
[17]Cheung Y K, Lau S L. Incremental timespace finite strip method for nonlinear structural vibrations[J]. Earthquake Engineering and Structural Dynamics, 1982,10(2):239—253.
Nonlinear dynamic characteristics of two elastically coupled
Duffing nanomechanical resonators
XU Mingtian
(School of Civil Engineering, Shandong University, Jinan 250061, China)
Abstract: In order to apply the nonlinear dynamic theory to the ultrasensitive mass sensing technology, an integral equation approach is employed to investigate the nonlinear dynamic characteristics of a forced nonlinear system consisting of two elastically coupled nanomechanical resonators. Firstly, the Green function of the linear part of the governing equation is expressed into the series form. Then the governing equation is transformed into the integral equation. The integral equation is further reduced into the algebraic equation system which can be solved numerically. It is found that when the system parameters take a group of specific values the mode localization phenomenon can occur. When the system parameters take another group of specific values, the tiny change of the mass of one resonator can cause a drastic change of the periodic response of the other resonator.Key words: nonlinear vibration; Duffing resonator; mass sensing; integral equation approach作者简介:许明田(1965—),男,教授。电话:(0531)88395809;Email:[email protected]
通讯作者:何勇(1979—),男,讲师。电话:(0571)87951817608;Email: [email protected]
基金项目:浙江大学国防预研基金资助项目; 浙江省“钱江人才”计划资助项目(QJD0702006)