摘 要 由新型冠状病毒引起的新型冠状病毒肺炎大流行是严重威胁人类健康的全球重要公共卫生问题,而接种新型冠状病毒疫苗无疑是阻断该病毒传播的有效手段。因此,目前各国均在致力于新型冠状病毒疫苗的研发和/或推广接种。本文就各类新型冠状病毒疫苗的研发现状和今后研究方向作一概述。
关键词 新型冠状病毒 新型冠状病毒肺炎 疫苗
中图分类号:R183.3; R186.3 文献标志码:A 文章编号:1006-1533(2021)17-0016-06
Research and development progress of SARS-CoV-2 vaccines
HUANG Suyue, SHEN Yinzhong
(Department of Infection and Immunity, Shanghai Public Health Clinical Center, Shanghai 201508, China)
ABSTRACT A coronavirus disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains an important global public health problem that seriously threatens human health. Promoting vaccination is undoubtedly an effective way to control the spread of the disease under the ongoing pandemic of coronavirus disease 2019 (COVID-19). Many countries are committed to the development and promotion of SARS-CoV-2 vaccines. This paper summarizes the current status of the research and development and the future directions of SARS-CoV-2 vaccines.
KEy WORDS SARS-CoV-2; COVID-19; vaccines
自2019年12月以来,新型冠状病毒肺炎(coronavirus disease 2019, COVID-19)[1]陆续在全球范围内广泛流行。目前,COVID-19疫情依旧严峻。根据WHO统计[2],截至2021年5月21日,全球报告的COVID-19确诊病例数达165 069 258例,其中累计死亡病例数为3 422 907例;确诊病例数最多的5个国家依次为美国(32 706 250例)、印度(26 031 991例)、巴西(15 812 055例)、法国(5 820 918例)和土耳其(5 151 038例);近7 d新增确诊病例数最多的国家依次为印度(新增1 985 182例)、巴西(新增452 658例)和美国(新增209 764例)。我国累计确诊病例数为105 647例,死亡病例数为4 861例。
面对COVID-19疫情,各国积极采取各种措施对该疾病进行预防和控制,包括非药物性干预措施(佩戴口罩、保持安全社交距离、勤洗手、封闭疫区等)和药物性干预措施。但在当下尚未找到对COVID-19有确切疗效的抗病毒药物的情况下,接种新型冠状病毒疫苗无疑是形成群体免疫屏障,阻断病毒进一步传播和降低患者病死率的最佳手段。截至2021年5月21日,全球共有14个新型冠状病毒疫苗已经获准紧急使用,另有101个新型冠状病毒疫苗处于临床研究阶段,183个新型冠状病毒疫苗处于临床前开发阶段;全球新型冠状病毒疫苗累计接种量为15.9亿剂次,其中疫苗接种量最高的国家为中国(>4.8亿剂次),接种率最高的国家为以色列(>60%)[3]。本文就各類新型冠状病毒疫苗的研发现状和今后研究方向作一概述。
为了尽快控制COVID-19疫情,保障人民生命健康安全,减少疫情带来的各方面损失,各国均在致力于新型冠状病毒疫苗的研发和推广接种。不过,尽管已有多个新型冠状病毒疫苗获准紧急使用,但许多与疫苗本身相关的基础性问题仍待研究解决,包括疫苗对<18岁和>60岁人群的保护效果,疫苗对存在基础疾病人群的影响,疫苗接种后的确切的保护期限和不良反应的发生率、发生机制,以及疫苗对病毒变异株感染的保护作用等。目前,我们应提高新型冠状病毒疫苗的安全性和有效性,并及时公开研究数据,以消除公众对疫苗的疑虑,提高疫苗接种率,这对进一步控制COVID-19疫情具有十分重要的意义。
参考文献
[1] Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019 [J]. N Engl J Med, 2020, 382(8): 727-733.
[2] WHO. WHO coronavirus (COVID-19) dashboard [EB/OL].(2021-05-21) [2021-05-21]. https://covid19.who.int.
[3] WHO. Draft landscape and tracker of COVID-19 candidate vaccines [EB/OL]. (2021-05-11) [2021-05-21]. https://www. who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.
[4] Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus [J]. Microbiol Mol Biol Rev, 2005, 69(4): 635-664.
[5] 中國疾病预防控制中心. 冠状病毒[EB/OL]. (2020-01-09) [2021-05-02]. https://www.chinacdc.cn/jkzt/crb/zl/ szkb_11803/jszl_2275/202001/t20200121_211326.html.
[6] Lau YL, Peiris JS. Pathogenesis of severe acute respiratory syndrome [J]. Curr Opin Immunol, 2005, 17(4): 404-410.
[7] Zhang H, Penninger JM, Li Y, et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target [J]. Intensive Care Med, 2020, 46(4): 586-590.
[8] Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARSCoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor [J]. Cell, 2020, 181(2): 271-280.e8.
[9] Ton AT, Gentile F, Hsing M, et al. Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 billion compounds [J]. Mol Inform, 2020, 39(8): e2000028.
[10] Zhang L, Lin D, Sun X, et al. Crystal structure of SARSCoV-2 main protease provides a basis for design of improvedα-ketoamide inhibitors [J]. Science, 2020, 368(6489): 409-412.
[11] Graham RL, Sparks JS, Eckerle LD, et al. SARS coronavirus replicase proteins in pathogenesis [J]. Virus Res, 2008, 133(1): 88-100.
[12] Le TT, Cramer JP, Chen R, et al. Evolution of the COVID-19 vaccine development landscape [J]. Nat Rev Drug Discov, 2020, 19(10): 667-668.
[13] Zhang YJ, Zeng G, Pan HX, et al. Immunogenicity and safety of a SARS-CoV-2 inactivated vaccine in healthy adults aged 18-59 years: report of the randomized, double-blind, and placebo-controlled phase 2 clinical trial [EB/OL]. (2020-08-10) [2021-05-02]. https://www.medrxiv.org/content/10.1101/2 020.07.31.20161216v1.
[14] Wu Z, Hu Y, Xu M, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine(CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial [J]. Lancet Infect Dis, 2021, 21(6): 803-812.
[15] Wan Y, Shang J, Sun S, et al. Molecular mechanism for antibody-dependent enhancement of coronavirus entry [J]. J Virol, 2020, 94(5): e02015-e02019.
[16] Lundstrom K. Application of viral vectors for vaccine development with a special emphasis on COVID-19 [J]. Viruses, 2020, 12(11): 1324.
[17] Kremer EJ. Pros and cons of adenovirus-based SARS-CoV-2 vaccines [J]. Mol Ther, 2020, 28(11): 2303-2304.
[18] ?stergaard SD, Schmidt M, Horváth-Puhó E, et al. Thromboembolism and the Oxford-AstraZeneca COVID-19 vaccine: side-effect or coincidence? [J]. Lancet, 2021, 397(10283): 1441-1443.
[19] Menni C, Klaser K, May A. Vaccine side-effects and SARSCoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study [J/OL]. Lancet Infect Dis, 2021 Apr 27: S1473-3099(21)00224-3 [2021-05-02]. https://doi.org/10.1016/ S1473-3099(21)00224-3.
[20] Cao Y, Zhu X, Hossen MN, et al. Augmentation of vaccineinduced humoral and cellular immunity by a physical radiofrequency adjuvant [J]. Nat Commun, 2018, 9(1): 3695.
[21] Wang N, Shang J, Jiang S, et al. Subunit vaccines against emerging pathogenic human coronaviruses [J]. Front Microbiol, 2020, 11: 298.
[22] Mulligan MJ, Lyke KE, Kitchin N, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults [J]. Nature, 2020, 586(7830): 589-593.
[23] Maruggi G, Zhang C, Li J, et al. mRNA as a transformative technology for vaccine development to control infectious diseases [J]. Mol Ther, 2019, 27(4): 757-772.
[24] Saunders KO, Lee E, Parks R, et al. Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses [J/OL]. Nature, 2021 May 10 [2021-05-21]. https://doi.org/10.1038/ s41586-021-03594-0.
[25] See I, Su JR, Lale A, et al. US case reports of cerebral venous sinus thrombosis with thrombocytopenia after Ad26.COV2. S vaccination, March 2 to April 21, 2021 [J/OL]. JAMA, 2021 Apr 30: e217517 [2021-05-02]. https://jamanetwork. com/journals/jama/fullarticle/2779731. doi: 10.1001/ jama.2021.7517.
[26] Haas EJ, Angulo FJ, McLaughlin JM, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS- CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data [J]. Lancet, 2021, 397(10287): 1819-1829.
[27] Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses [J]. Trends Microbiol, 2016, 24(6): 490-502.
[28] Kemp SA, Collier DA, Datir RP, et al. SARS-CoV-2 evolution during treatment of chronic infection [J]. Nature, 2021, 592(7853): 277-282.
[29] Korber B, Fischer WM, Gnanakaran S, et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus [J]. Cell, 2020, 182(4): 812-827.e19.
[30] Centers for Disease Control and Prevention. SARS-CoV-2 variant classifications and definitions [EB/OL]. (2021-05-05)[2021-05-21]. https://www.cdc.gov/coronavirus/2019-ncov/ cases-updates/variant-surveillance/variant-info.html.
[31] Weissman D, Alameh MG, de Silva T, et al. D614G spike mutation increases SARS CoV-2 susceptibility to neutralization [J]. Cell Host Microbe, 2021, 29(1): 23-31.e4.
[32] WHO. Coronavirus disease (COVID-19): vaccine access and allocation [EB/OL]. (2020-11-16) [2021-05-02]. https:// www.who.int/emergencies/diseases/novel-coronavirus-2019/ question-and-answers-hub/q-a-detail/coronavirus-disease-(covid-19)-vaccine-access-and-allocation.