论文部分内容阅读
针对直接线性判别分析(DLDA)人脸识别算法存在的小样本问题,以及图像二维线性判别分析(2D-LDA)算法需要较多存储空间的问题,文中结合二维方法与直接判决的优点,提出基于二维图像直接线性判别分析(2D-DLDA)的人脸识别算法.该算法在克服小样本问题的同时,不会丢失图像中的有用信息,而且可以避免采用奇异值分解导致的无法精确计算特征向量的问题.在ORL和Yale人脸数据库中的实验结果表明,该算法具有较高的识别率和鲁棒性.