论文部分内容阅读
将神经网络与签名识别相结合,利用前向多层神经网络的反向传播算法(即BP算法),采用Matlab神经网络工具箱构建用于特征识别的三层前向神经网络,同时使用了基于Gabor和Zernike相结合的特征提取方法,最终识别出待识别的手写签名。实验结果证明识别率可达到93.70%以上,证明了该方法的有效性。